Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,20 +10,18 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
10 |
|
11 |
class AnimeGANv3:
|
12 |
def __init__(self):
|
13 |
-
# Ensure directories exist
|
14 |
os.makedirs('output', exist_ok=True)
|
15 |
os.makedirs('frames', exist_ok=True)
|
|
|
16 |
|
17 |
def process_frame(self, frame, style_code, det_face):
|
18 |
-
"""Process a single frame with AnimeGANv3."""
|
19 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
20 |
output = AnimeGANv3_src.Convert(frame_rgb, style_code, det_face)
|
21 |
-
return output[:, :, ::-1]
|
22 |
|
23 |
def inference(self, video_path, style, if_face=None):
|
24 |
logging.info(f"Starting inference: video={video_path}, style={style}, face_detection={if_face}")
|
25 |
try:
|
26 |
-
# Map style names to codes
|
27 |
style_codes = {
|
28 |
"AnimeGANv3_Arcane": "A",
|
29 |
"AnimeGANv3_Trump v1.0": "T",
|
@@ -37,40 +35,49 @@ class AnimeGANv3:
|
|
37 |
style_code = style_codes.get(style, "U")
|
38 |
det_face = if_face == "Yes"
|
39 |
|
40 |
-
# Open
|
41 |
cap = cv2.VideoCapture(video_path)
|
42 |
if not cap.isOpened():
|
43 |
raise Exception("Could not open video file")
|
44 |
|
45 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
46 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
47 |
-
frames = []
|
48 |
-
|
49 |
-
while cap.isOpened():
|
50 |
-
ret, frame = cap.read()
|
51 |
-
if not ret:
|
52 |
-
break
|
53 |
-
frames.append(frame)
|
54 |
-
|
55 |
-
cap.release()
|
56 |
logging.info(f"Extracted {frame_count} frames at {fps} FPS to process")
|
57 |
|
58 |
-
# Process
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
if
|
73 |
-
|
|
|
|
|
74 |
|
75 |
logging.info(f"Video created: {save_path}")
|
76 |
return save_path
|
@@ -78,10 +85,10 @@ class AnimeGANv3:
|
|
78 |
logging.error(f"Error: {str(error)}")
|
79 |
return None
|
80 |
|
81 |
-
# Create an instance
|
82 |
anime_gan = AnimeGANv3()
|
83 |
|
84 |
-
#
|
85 |
title = "AnimeGANv3: Video to Anime Converter"
|
86 |
description = r"""Upload a video to convert it into anime style using AnimeGANv3.<br>
|
87 |
Select a style and choose whether to optimize for faces.<br>
|
@@ -112,5 +119,4 @@ iface = gr.Interface(
|
|
112 |
allow_flagging="never"
|
113 |
)
|
114 |
|
115 |
-
# Launch the interface
|
116 |
iface.launch()
|
|
|
10 |
|
11 |
class AnimeGANv3:
|
12 |
def __init__(self):
|
|
|
13 |
os.makedirs('output', exist_ok=True)
|
14 |
os.makedirs('frames', exist_ok=True)
|
15 |
+
logging.info(f"Available ONNX Runtime providers: {ort.get_available_providers()}")
|
16 |
|
17 |
def process_frame(self, frame, style_code, det_face):
|
|
|
18 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
19 |
output = AnimeGANv3_src.Convert(frame_rgb, style_code, det_face)
|
20 |
+
return output[:, :, ::-1]
|
21 |
|
22 |
def inference(self, video_path, style, if_face=None):
|
23 |
logging.info(f"Starting inference: video={video_path}, style={style}, face_detection={if_face}")
|
24 |
try:
|
|
|
25 |
style_codes = {
|
26 |
"AnimeGANv3_Arcane": "A",
|
27 |
"AnimeGANv3_Trump v1.0": "T",
|
|
|
35 |
style_code = style_codes.get(style, "U")
|
36 |
det_face = if_face == "Yes"
|
37 |
|
38 |
+
# Open video
|
39 |
cap = cv2.VideoCapture(video_path)
|
40 |
if not cap.isOpened():
|
41 |
raise Exception("Could not open video file")
|
42 |
|
43 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
44 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
logging.info(f"Extracted {frame_count} frames at {fps} FPS to process")
|
46 |
|
47 |
+
# Process in batches
|
48 |
+
batch_size = 50 # Adjust based on testing (e.g., 50 frames per batch)
|
49 |
+
save_path = "output/out.mp4"
|
50 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
51 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
52 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
53 |
+
out = None # Video writer initialized later
|
54 |
|
55 |
+
frame_idx = 0
|
56 |
+
while cap.isOpened():
|
57 |
+
batch_frames = []
|
58 |
+
for _ in range(batch_size):
|
59 |
+
ret, frame = cap.read()
|
60 |
+
if not ret:
|
61 |
+
break
|
62 |
+
batch_frames.append(frame)
|
63 |
+
frame_idx += 1
|
64 |
+
|
65 |
+
if not batch_frames:
|
66 |
+
break
|
67 |
|
68 |
+
# Process batch
|
69 |
+
for idx, frame in enumerate(batch_frames):
|
70 |
+
stylized_frame = self.process_frame(frame, style_code, det_face)
|
71 |
+
if out is None: # Initialize writer on first frame
|
72 |
+
out = cv2.VideoWriter(save_path, fourcc, fps, (width, height))
|
73 |
+
out.write(stylized_frame)
|
74 |
+
logging.info(f"Processed frame {frame_idx - len(batch_frames) + idx + 1}/{frame_count}")
|
75 |
|
76 |
+
cap.release()
|
77 |
+
if out:
|
78 |
+
out.release()
|
79 |
+
else:
|
80 |
+
raise Exception("No frames processed")
|
81 |
|
82 |
logging.info(f"Video created: {save_path}")
|
83 |
return save_path
|
|
|
85 |
logging.error(f"Error: {str(error)}")
|
86 |
return None
|
87 |
|
88 |
+
# Create an instance
|
89 |
anime_gan = AnimeGANv3()
|
90 |
|
91 |
+
# Gradio interface
|
92 |
title = "AnimeGANv3: Video to Anime Converter"
|
93 |
description = r"""Upload a video to convert it into anime style using AnimeGANv3.<br>
|
94 |
Select a style and choose whether to optimize for faces.<br>
|
|
|
119 |
allow_flagging="never"
|
120 |
)
|
121 |
|
|
|
122 |
iface.launch()
|