Spaces:
Sleeping
Sleeping
| """Beamformer module.""" | |
| from typing import Sequence, Tuple, Union | |
| import torch | |
| from packaging.version import parse as V | |
| from torch_complex import functional as FC | |
| from torch_complex.tensor import ComplexTensor | |
| EPS = torch.finfo(torch.double).eps | |
| is_torch_1_8_plus = V(torch.__version__) >= V("1.8.0") | |
| is_torch_1_9_plus = V(torch.__version__) >= V("1.9.0") | |
| def new_complex_like( | |
| ref: Union[torch.Tensor, ComplexTensor], | |
| real_imag: Tuple[torch.Tensor, torch.Tensor], | |
| ): | |
| if isinstance(ref, ComplexTensor): | |
| return ComplexTensor(*real_imag) | |
| elif is_torch_complex_tensor(ref): | |
| return torch.complex(*real_imag) | |
| else: | |
| raise ValueError( | |
| "Please update your PyTorch version to 1.9+ for complex support." | |
| ) | |
| def is_torch_complex_tensor(c): | |
| return ( | |
| not isinstance(c, ComplexTensor) and is_torch_1_9_plus and torch.is_complex(c) | |
| ) | |
| def is_complex(c): | |
| return isinstance(c, ComplexTensor) or is_torch_complex_tensor(c) | |
| def to_double(c): | |
| if not isinstance(c, ComplexTensor) and is_torch_1_9_plus and torch.is_complex(c): | |
| return c.to(dtype=torch.complex128) | |
| else: | |
| return c.double() | |
| def to_float(c): | |
| if not isinstance(c, ComplexTensor) and is_torch_1_9_plus and torch.is_complex(c): | |
| return c.to(dtype=torch.complex64) | |
| else: | |
| return c.float() | |
| def cat(seq: Sequence[Union[ComplexTensor, torch.Tensor]], *args, **kwargs): | |
| if not isinstance(seq, (list, tuple)): | |
| raise TypeError( | |
| "cat(): argument 'tensors' (position 1) must be tuple of Tensors, " | |
| "not Tensor" | |
| ) | |
| if isinstance(seq[0], ComplexTensor): | |
| return FC.cat(seq, *args, **kwargs) | |
| else: | |
| return torch.cat(seq, *args, **kwargs) | |
| def complex_norm( | |
| c: Union[torch.Tensor, ComplexTensor], dim=-1, keepdim=False | |
| ) -> torch.Tensor: | |
| if not is_complex(c): | |
| raise TypeError("Input is not a complex tensor.") | |
| if is_torch_complex_tensor(c): | |
| return torch.norm(c, dim=dim, keepdim=keepdim) | |
| else: | |
| if dim is None: | |
| return torch.sqrt((c.real**2 + c.imag**2).sum() + EPS) | |
| else: | |
| return torch.sqrt( | |
| (c.real**2 + c.imag**2).sum(dim=dim, keepdim=keepdim) + EPS | |
| ) | |
| def einsum(equation, *operands): | |
| # NOTE: Do not mix ComplexTensor and torch.complex in the input! | |
| # NOTE (wangyou): Until PyTorch 1.9.0, torch.einsum does not support | |
| # mixed input with complex and real tensors. | |
| if len(operands) == 1: | |
| if isinstance(operands[0], (tuple, list)): | |
| operands = operands[0] | |
| complex_module = FC if isinstance(operands[0], ComplexTensor) else torch | |
| return complex_module.einsum(equation, *operands) | |
| elif len(operands) != 2: | |
| op0 = operands[0] | |
| same_type = all(op.dtype == op0.dtype for op in operands[1:]) | |
| if same_type: | |
| _einsum = FC.einsum if isinstance(op0, ComplexTensor) else torch.einsum | |
| return _einsum(equation, *operands) | |
| else: | |
| raise ValueError("0 or More than 2 operands are not supported.") | |
| a, b = operands | |
| if isinstance(a, ComplexTensor) or isinstance(b, ComplexTensor): | |
| return FC.einsum(equation, a, b) | |
| elif is_torch_1_9_plus and (torch.is_complex(a) or torch.is_complex(b)): | |
| if not torch.is_complex(a): | |
| o_real = torch.einsum(equation, a, b.real) | |
| o_imag = torch.einsum(equation, a, b.imag) | |
| return torch.complex(o_real, o_imag) | |
| elif not torch.is_complex(b): | |
| o_real = torch.einsum(equation, a.real, b) | |
| o_imag = torch.einsum(equation, a.imag, b) | |
| return torch.complex(o_real, o_imag) | |
| else: | |
| return torch.einsum(equation, a, b) | |
| else: | |
| return torch.einsum(equation, a, b) | |
| def inverse( | |
| c: Union[torch.Tensor, ComplexTensor] | |
| ) -> Union[torch.Tensor, ComplexTensor]: | |
| if isinstance(c, ComplexTensor): | |
| return c.inverse2() | |
| else: | |
| return c.inverse() | |
| def matmul( | |
| a: Union[torch.Tensor, ComplexTensor], b: Union[torch.Tensor, ComplexTensor] | |
| ) -> Union[torch.Tensor, ComplexTensor]: | |
| # NOTE: Do not mix ComplexTensor and torch.complex in the input! | |
| # NOTE (wangyou): Until PyTorch 1.9.0, torch.matmul does not support | |
| # multiplication between complex and real tensors. | |
| if isinstance(a, ComplexTensor) or isinstance(b, ComplexTensor): | |
| return FC.matmul(a, b) | |
| elif is_torch_1_9_plus and (torch.is_complex(a) or torch.is_complex(b)): | |
| if not torch.is_complex(a): | |
| o_real = torch.matmul(a, b.real) | |
| o_imag = torch.matmul(a, b.imag) | |
| return torch.complex(o_real, o_imag) | |
| elif not torch.is_complex(b): | |
| o_real = torch.matmul(a.real, b) | |
| o_imag = torch.matmul(a.imag, b) | |
| return torch.complex(o_real, o_imag) | |
| else: | |
| return torch.matmul(a, b) | |
| else: | |
| return torch.matmul(a, b) | |
| def trace(a: Union[torch.Tensor, ComplexTensor]): | |
| # NOTE (wangyou): until PyTorch 1.9.0, torch.trace does not | |
| # support bacth processing. Use FC.trace() as fallback. | |
| return FC.trace(a) | |
| def reverse(a: Union[torch.Tensor, ComplexTensor], dim=0): | |
| if isinstance(a, ComplexTensor): | |
| return FC.reverse(a, dim=dim) | |
| else: | |
| return torch.flip(a, dims=(dim,)) | |
| def solve(b: Union[torch.Tensor, ComplexTensor], a: Union[torch.Tensor, ComplexTensor]): | |
| """Solve the linear equation ax = b.""" | |
| # NOTE: Do not mix ComplexTensor and torch.complex in the input! | |
| # NOTE (wangyou): Until PyTorch 1.9.0, torch.solve does not support | |
| # mixed input with complex and real tensors. | |
| if isinstance(a, ComplexTensor) or isinstance(b, ComplexTensor): | |
| if isinstance(a, ComplexTensor) and isinstance(b, ComplexTensor): | |
| return FC.solve(b, a, return_LU=False) | |
| else: | |
| return matmul(inverse(a), b) | |
| elif is_torch_1_9_plus and (torch.is_complex(a) or torch.is_complex(b)): | |
| if torch.is_complex(a) and torch.is_complex(b): | |
| return torch.linalg.solve(a, b) | |
| else: | |
| return matmul(inverse(a), b) | |
| else: | |
| if is_torch_1_8_plus: | |
| return torch.linalg.solve(a, b) | |
| else: | |
| return torch.solve(b, a)[0] | |
| def stack(seq: Sequence[Union[ComplexTensor, torch.Tensor]], *args, **kwargs): | |
| if not isinstance(seq, (list, tuple)): | |
| raise TypeError( | |
| "stack(): argument 'tensors' (position 1) must be tuple of Tensors, " | |
| "not Tensor" | |
| ) | |
| if isinstance(seq[0], ComplexTensor): | |
| return FC.stack(seq, *args, **kwargs) | |
| else: | |
| return torch.stack(seq, *args, **kwargs) |