Spaces:
Build error
Build error
Upload inference.py
#1
by
Plasmati
- opened
- inference.py +169 -0
inference.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from omegaconf import OmegaConf
|
| 7 |
+
from torchvision.transforms import v2
|
| 8 |
+
from diffusers.utils import load_image
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
from pipeline import CausalInferencePipeline
|
| 11 |
+
from wan.vae.wanx_vae import get_wanx_vae_wrapper
|
| 12 |
+
from demo_utils.vae_block3 import VAEDecoderWrapper
|
| 13 |
+
from utils.visualize import process_video
|
| 14 |
+
from utils.misc import set_seed
|
| 15 |
+
from utils.conditions import *
|
| 16 |
+
from utils.wan_wrapper import WanDiffusionWrapper
|
| 17 |
+
from safetensors.torch import load_file
|
| 18 |
+
|
| 19 |
+
def parse_args():
|
| 20 |
+
parser = argparse.ArgumentParser()
|
| 21 |
+
parser.add_argument("--config_path", type=str, default="configs/inference_yaml/inference_universal.yaml", help="Path to the config file")
|
| 22 |
+
parser.add_argument("--checkpoint_path", type=str, default="", help="Path to the checkpoint")
|
| 23 |
+
parser.add_argument("--img_path", type=str, default="demo_images/universal/0000.png", help="Path to the image")
|
| 24 |
+
parser.add_argument("--output_folder", type=str, default="outputs/", help="Output folder")
|
| 25 |
+
parser.add_argument("--num_output_frames", type=int, default=150,
|
| 26 |
+
help="Number of output latent frames")
|
| 27 |
+
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
| 28 |
+
parser.add_argument("--pretrained_model_path", type=str, default="Matrix-Game-2.0", help="Path to the VAE model folder")
|
| 29 |
+
args = parser.parse_args()
|
| 30 |
+
return args
|
| 31 |
+
|
| 32 |
+
class InteractiveGameInference:
|
| 33 |
+
def __init__(self, args):
|
| 34 |
+
self.args = args
|
| 35 |
+
self.device = torch.device("cuda")
|
| 36 |
+
self.weight_dtype = torch.bfloat16
|
| 37 |
+
|
| 38 |
+
self._init_config()
|
| 39 |
+
self._init_models()
|
| 40 |
+
|
| 41 |
+
self.frame_process = v2.Compose([
|
| 42 |
+
v2.Resize(size=(352, 640), antialias=True),
|
| 43 |
+
v2.ToTensor(),
|
| 44 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 45 |
+
])
|
| 46 |
+
|
| 47 |
+
def _init_config(self):
|
| 48 |
+
self.config = OmegaConf.load(self.args.config_path)
|
| 49 |
+
|
| 50 |
+
def _init_models(self):
|
| 51 |
+
# Initialize pipeline
|
| 52 |
+
generator = WanDiffusionWrapper(
|
| 53 |
+
**getattr(self.config, "model_kwargs", {}), is_causal=True)
|
| 54 |
+
current_vae_decoder = VAEDecoderWrapper()
|
| 55 |
+
vae_state_dict = torch.load(os.path.join(self.args.pretrained_model_path, "Wan2.1_VAE.pth"), map_location="cpu")
|
| 56 |
+
decoder_state_dict = {}
|
| 57 |
+
for key, value in vae_state_dict.items():
|
| 58 |
+
if 'decoder.' in key or 'conv2' in key:
|
| 59 |
+
decoder_state_dict[key] = value
|
| 60 |
+
current_vae_decoder.load_state_dict(decoder_state_dict)
|
| 61 |
+
current_vae_decoder.to(self.device, torch.float16)
|
| 62 |
+
current_vae_decoder.requires_grad_(False)
|
| 63 |
+
current_vae_decoder.eval()
|
| 64 |
+
current_vae_decoder.compile(mode="max-autotune-no-cudagraphs")
|
| 65 |
+
pipeline = CausalInferencePipeline(self.config, generator=generator, vae_decoder=current_vae_decoder)
|
| 66 |
+
if self.args.checkpoint_path:
|
| 67 |
+
print("Loading Pretrained Model...")
|
| 68 |
+
state_dict = load_file(self.args.checkpoint_path)
|
| 69 |
+
pipeline.generator.load_state_dict(state_dict)
|
| 70 |
+
|
| 71 |
+
self.pipeline = pipeline.to(device=self.device, dtype=self.weight_dtype)
|
| 72 |
+
self.pipeline.vae_decoder.to(torch.float16)
|
| 73 |
+
|
| 74 |
+
vae = get_wanx_vae_wrapper(self.args.pretrained_model_path, torch.float16)
|
| 75 |
+
vae.requires_grad_(False)
|
| 76 |
+
vae.eval()
|
| 77 |
+
self.vae = vae.to(self.device, self.weight_dtype)
|
| 78 |
+
|
| 79 |
+
def _resizecrop(self, image, th, tw):
|
| 80 |
+
w, h = image.size
|
| 81 |
+
if h / w > th / tw:
|
| 82 |
+
new_w = int(w)
|
| 83 |
+
new_h = int(new_w * th / tw)
|
| 84 |
+
else:
|
| 85 |
+
new_h = int(h)
|
| 86 |
+
new_w = int(new_h * tw / th)
|
| 87 |
+
left = (w - new_w) / 2
|
| 88 |
+
top = (h - new_h) / 2
|
| 89 |
+
right = (w + new_w) / 2
|
| 90 |
+
bottom = (h + new_h) / 2
|
| 91 |
+
image = image.crop((left, top, right, bottom))
|
| 92 |
+
return image
|
| 93 |
+
|
| 94 |
+
def generate_videos(self):
|
| 95 |
+
mode = self.config.pop('mode')
|
| 96 |
+
assert mode in ['universal', 'gta_drive', 'templerun']
|
| 97 |
+
|
| 98 |
+
image = load_image(self.args.img_path)
|
| 99 |
+
image = self._resizecrop(image, 352, 640)
|
| 100 |
+
image = self.frame_process(image)[None, :, None, :, :].to(dtype=self.weight_dtype, device=self.device)
|
| 101 |
+
# Encode the input image as the first latent
|
| 102 |
+
padding_video = torch.zeros_like(image).repeat(1, 1, 4 * (self.args.num_output_frames - 1), 1, 1)
|
| 103 |
+
img_cond = torch.concat([image, padding_video], dim=2)
|
| 104 |
+
tiler_kwargs={"tiled": True, "tile_size": [44, 80], "tile_stride": [23, 38]}
|
| 105 |
+
img_cond = self.vae.encode(img_cond, device=self.device, **tiler_kwargs).to(self.device)
|
| 106 |
+
mask_cond = torch.ones_like(img_cond)
|
| 107 |
+
mask_cond[:, :, 1:] = 0
|
| 108 |
+
cond_concat = torch.cat([mask_cond[:, :4], img_cond], dim=1)
|
| 109 |
+
visual_context = self.vae.clip.encode_video(image)
|
| 110 |
+
sampled_noise = torch.randn(
|
| 111 |
+
[1, 16,self.args.num_output_frames, 44, 80], device=self.device, dtype=self.weight_dtype
|
| 112 |
+
)
|
| 113 |
+
num_frames = (self.args.num_output_frames - 1) * 4 + 1
|
| 114 |
+
|
| 115 |
+
conditional_dict = {
|
| 116 |
+
"cond_concat": cond_concat.to(device=self.device, dtype=self.weight_dtype),
|
| 117 |
+
"visual_context": visual_context.to(device=self.device, dtype=self.weight_dtype)
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
if mode == 'universal':
|
| 121 |
+
cond_data = Bench_actions_universal(num_frames)
|
| 122 |
+
mouse_condition = cond_data['mouse_condition'].unsqueeze(0).to(device=self.device, dtype=self.weight_dtype)
|
| 123 |
+
conditional_dict['mouse_cond'] = mouse_condition
|
| 124 |
+
elif mode == 'gta_drive':
|
| 125 |
+
cond_data = Bench_actions_gta_drive(num_frames)
|
| 126 |
+
mouse_condition = cond_data['mouse_condition'].unsqueeze(0).to(device=self.device, dtype=self.weight_dtype)
|
| 127 |
+
conditional_dict['mouse_cond'] = mouse_condition
|
| 128 |
+
else:
|
| 129 |
+
cond_data = Bench_actions_templerun(num_frames)
|
| 130 |
+
keyboard_condition = cond_data['keyboard_condition'].unsqueeze(0).to(device=self.device, dtype=self.weight_dtype)
|
| 131 |
+
conditional_dict['keyboard_cond'] = keyboard_condition
|
| 132 |
+
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
videos = self.pipeline.inference(
|
| 135 |
+
noise=sampled_noise,
|
| 136 |
+
conditional_dict=conditional_dict,
|
| 137 |
+
return_latents=False,
|
| 138 |
+
mode=mode,
|
| 139 |
+
profile=False
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
videos_tensor = torch.cat(videos, dim=1)
|
| 143 |
+
videos = rearrange(videos_tensor, "B T C H W -> B T H W C")
|
| 144 |
+
videos = ((videos.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)[0]
|
| 145 |
+
video = np.ascontiguousarray(videos)
|
| 146 |
+
mouse_icon = 'assets/images/mouse.png'
|
| 147 |
+
if mode != 'templerun':
|
| 148 |
+
config = (
|
| 149 |
+
keyboard_condition[0].float().cpu().numpy(),
|
| 150 |
+
mouse_condition[0].float().cpu().numpy()
|
| 151 |
+
)
|
| 152 |
+
else:
|
| 153 |
+
config = (
|
| 154 |
+
keyboard_condition[0].float().cpu().numpy()
|
| 155 |
+
)
|
| 156 |
+
process_video(video.astype(np.uint8), self.args.output_folder+f'/demo.mp4', config, mouse_icon, mouse_scale=0.1, process_icon=False, mode=mode)
|
| 157 |
+
process_video(video.astype(np.uint8), self.args.output_folder+f'/demo_icon.mp4', config, mouse_icon, mouse_scale=0.1, process_icon=True, mode=mode)
|
| 158 |
+
print("Done")
|
| 159 |
+
|
| 160 |
+
def main():
|
| 161 |
+
"""Main entry point for video generation."""
|
| 162 |
+
args = parse_args()
|
| 163 |
+
set_seed(args.seed)
|
| 164 |
+
os.makedirs(args.output_folder, exist_ok=True)
|
| 165 |
+
pipeline = InteractiveGameInference(args)
|
| 166 |
+
pipeline.generate_videos()
|
| 167 |
+
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
main()
|