G35 / app.py
JenniferHJF's picture
Update app.py
c69f58d verified
raw
history blame
1.91 kB
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
emoji_model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()
# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
"Toxic-BERT": "unitary/toxic-bert",
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}
# Streamlit 侧边栏模型选择
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
selected_model_id = model_options[selected_model]
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
def classify_emoji_text(text: str):
"""
Step 1: 翻译文本中的 emoji
Step 2: 使用分类器判断是否冒犯
"""
prompt = f"输入:{text}\n输出:"
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
with torch.no_grad():
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# 保留真正输出部分(移除 prompt)
if "输出:" in decoded:
translated_text = decoded.split("输出:")[-1].strip()
else:
translated_text = decoded.strip()
result = classifier(translated_text)[0]
label = result["label"]
score = result["score"]
return translated_text, label, score