Spaces:
Sleeping
Sleeping
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import streamlit as st | |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型) | |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned" | |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True) | |
emoji_model = AutoModelForCausalLM.from_pretrained( | |
emoji_model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
).to("cuda" if torch.cuda.is_available() else "cpu") | |
emoji_model.eval() | |
# ✅ Step 2: 可选择的冒犯性文本识别模型 | |
model_options = { | |
"Toxic-BERT": "unitary/toxic-bert", | |
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive", | |
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion" | |
} | |
# Streamlit 侧边栏模型选择 | |
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys())) | |
selected_model_id = model_options[selected_model] | |
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1) | |
def classify_emoji_text(text: str): | |
""" | |
Step 1: 翻译文本中的 emoji | |
Step 2: 使用分类器判断是否冒犯 | |
""" | |
prompt = f"输入:{text}\n输出:" | |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device) | |
with torch.no_grad(): | |
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False) | |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# 保留真正输出部分(移除 prompt) | |
if "输出:" in decoded: | |
translated_text = decoded.split("输出:")[-1].strip() | |
else: | |
translated_text = decoded.strip() | |
result = classifier(translated_text)[0] | |
label = result["label"] | |
score = result["score"] | |
return translated_text, label, score | |