Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PIL import Image | |
| import base64 | |
| import transformers | |
| model_name = 'Intel/neural-chat-7b-v3-1' | |
| model = transformers.AutoModelForCausalLM.from_pretrained(model_name) | |
| tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
| def generate_response(system_input, user_input): | |
| # Format the input using the provided template | |
| prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n" | |
| # Tokenize and encode the prompt | |
| inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False) | |
| # Generate a response | |
| outputs = model.generate(inputs, max_length=1000, num_return_sequences=1) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract only the assistant's response | |
| return response.split("### Assistant:\n")[-1] | |
| # Example usage | |
| system_input = "You are a employee in the customer succes department of a company called Retraced that works in sustainability and traceability" | |
| prompt = st.text_input(str("Insert here you prompt?")) | |
| response = generate_response(system_input, prompt) | |
| st.write(response) | |