retrAIced / pages /Text Generation.py
JavierGon12's picture
Remove unnecessary libraries and clean code a bit
cd03817
raw
history blame
1.13 kB
import streamlit as st
from PIL import Image
import base64
import transformers
model_name = 'Intel/neural-chat-7b-v3-1'
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
def generate_response(system_input, user_input):
# Format the input using the provided template
prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n"
# Tokenize and encode the prompt
inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False)
# Generate a response
outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
return response.split("### Assistant:\n")[-1]
# Example usage
system_input = "You are a employee in the customer succes department of a company called Retraced that works in sustainability and traceability"
prompt = st.text_input(str("Insert here you prompt?"))
response = generate_response(system_input, prompt)
st.write(response)