File size: 11,358 Bytes
9c65f43 bc0cc2c 93ea772 394ed80 2357a25 9c65f43 f7bb2da 93ea772 9c65f43 960c4bf 9dafc22 960c4bf 9c65f43 df86ac1 9c65f43 2840c29 2b1053c 9c65f43 df86ac1 9c65f43 df86ac1 2e03002 53f0398 9c65f43 2b1053c 9c65f43 3c17554 9c65f43 3c17554 9c65f43 df86ac1 9c65f43 2840c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import json
import gradio as gr
from huggingface_hub import CommitScheduler
from pathlib import Path
import requests
from huggingface_hub import HfApi, HfFolder
from huggingface_hub import HfApi, HfFolder
import os
# Use the token from an environment variable
token = os.getenv('stb_leaderboard_json')
HfFolder.save_token(token)
def load_data():
url = "https://huggingface.co/datasets/stabletoolbench/StableToolBench_data/resolve/main/leaderboard_data.json"
response = requests.get(url)
data = response.json() # 将下载的内容解析为 JSON
return data
existing_data = load_data()
# 创建本地文件夹用于存储数据文件
dataset_dir = Path("my_dataset")
dataset_dir.mkdir(parents=True, exist_ok=True)
# 初始化 CommitScheduler
scheduler = CommitScheduler(
repo_id="stabletoolbench/StableToolBench_data", # 替换为你的用户名和数据集仓库名
repo_type="dataset",
folder_path=dataset_dir,
path_in_repo="",
)
# 根据排名生成表格数据
def generate_table(data):
if not data:
return [], [] # No data, return empty headers and rows
# Make sure all entries have a 'Scores' dictionary
valid_data = [entry for entry in data if 'Scores' in entry and isinstance(entry['Scores'], dict)]
# Sort the data based on the 'Average' score in descending order
sorted_data = sorted(valid_data, key=lambda x: x['Scores'].get('Average', 0), reverse=True)
# Now, build the table rows with the sorted data
headers = ["Method"] + list(sorted_data[0]['Scores'].keys()) if sorted_data else ["Method"]
rows = []
for entry in sorted_data:
row = [entry['Method']] + [entry['Scores'].get(key, "N/A") for key in headers[1:]]
rows.append(row)
return headers, rows
# 原始数据
protected_methods = ["GPT-4-Turbo-Preview (DFS)", "GPT-3.5-Turbo-1106 (DFS)", "GPT-4-0613 (DFS)", "GPT-3.5-Turbo-0613 (DFS)", "GPT-4-Turbo-Preview (CoT)", "ToolLLaMA v2 (DFS)", "GPT-4-0613 (CoT)", "GPT-3.5-Turbo-1106 (CoT)", "GPT-3.5-Turbo-0613 (CoT)", "ToolLLaMA v2 (CoT)"]
# 合并上传的数据到已有的数据中
def merge_data(uploaded_data_json):
# No need to call json.loads here because uploaded_data is already a Python dict
new_data = uploaded_data_json
with scheduler.lock: # 确保文件操作的线程安全
# Define a helper function to merge scores for an entry
def merge_scores(existing_scores, new_scores):
for key, value in new_scores.items():
existing_scores[key] = value
# Merge 'SolvablePassRateScores'
for new_entry in new_data["SolvablePassRateScores"]:
if new_entry["Method"] not in protected_methods:
existing_entry = next(
(item for item in existing_data["SolvablePassRateScores"] if item["Method"] == new_entry["Method"]),
None)
if existing_entry:
# 这是一个非保护的方法,更新它
merge_scores(existing_entry["Scores"], new_entry["Scores"])
else:
# 这是一个新的方法,添加到列表中
existing_data["SolvablePassRateScores"].append(new_entry)
# Merge 'SolvableWinRateScores'
for new_entry in new_data["SolvableWinRateScores"]:
if new_entry["Method"] not in protected_methods:
existing_entry = next(
(item for item in existing_data["SolvableWinRateScores"] if item["Method"] == new_entry["Method"]),
None)
if existing_entry:
merge_scores(existing_entry["Scores"], new_entry["Scores"])
else:
existing_data["SolvableWinRateScores"].append(new_entry)
data_file_path = dataset_dir / "leaderboard_data.json"
with open(data_file_path, 'w') as file:
json.dump(existing_data, file, indent=4)
# No need to sort here since we're doing it in the generate_table function
return existing_data
def process_file(file_info):
if file_info is not None:
# 如果 file_info 是文件的路径字符串,需要使用 'open' 来读取文件
with open(file_info, "r") as uploaded_file:
data_content = uploaded_file.read()
uploaded_data_json = json.loads(data_content)
# Merge the uploaded data
merge_data(uploaded_data_json)
pass_rate_table, win_rate_table = refresh_table_data()
return pass_rate_table, win_rate_table
def refresh_table_data():
# 重新加载数据
new_data = load_data()
# 重新生成表格数据
new_pass_rate_data = generate_table(new_data["SolvablePassRateScores"])[1]
new_win_rate_data = generate_table(new_data["SolvableWinRateScores"])[1]
# 返回新的表格数据
return new_pass_rate_data, new_win_rate_data
# 创建界面
with gr.Blocks() as app:
# The large title
gr.Markdown("# StableToolBench Leaderboard")
# The introductory content
gr.Markdown("""
**Large Language Models (LLMs)** have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluation system.
""")
gr.Markdown(""" ### For further information, please refer to: """)
buttons_html = """
<style>
.custom-link-button {
font-size: 18px !important; /* Adjust the font size as needed */
padding: 10px 15px !important; /* Add some padding */
margin: 5px !important;
color: white !important; /* Text color */
background-color: #106BA3 !important; /* Background color */
text-decoration: none !important; /* Remove underline from links */
display: inline-block !important;
border-radius: 5px !important; /* Rounded corners */
border: none !important; /* Remove borders */
cursor: pointer !important; /* Mouse pointer on hover */
text-align: center !important;
}
.custom-link-button:hover {
background-color: #0D5B8F !important;
}
</style>
<a href="https://arxiv.org/pdf/2403.07714.pdf" target="_blank" class="custom-link-button">Paper</a>
<a href="https://arxiv.org/abs/2403.07714" target="_blank" class="custom-link-button">arXiv</a>
<a href="https://github.com/zhichengg/StableToolBench" target="_blank" class="custom-link-button">Code</a>
<a href="https://drive.google.com/file/d/1XUiCMA5NV359UGR-eknF0TcXORuR7RXj/view?pli=1" target="_blank" class="custom-link-button">Cache Data</a>
"""
gr.HTML(buttons_html)
# Markdown 标题
gr.Markdown("## Solvable Pass Rate Scores")
# 初始生成表格数据
headers1, rows1 = generate_table(existing_data["SolvablePassRateScores"])
table1 = gr.Dataframe(headers=headers1, value=rows1, interactive=False)
gr.Markdown("## Solvable Win Rate Scores")
# 初始生成表格数据
headers2, rows2 = generate_table(existing_data["SolvableWinRateScores"])
table2 = gr.Dataframe(headers=headers2, value=rows2, interactive=False)
refresh_button = gr.Button("Refresh Leaderboards")
# 当刷新按钮被点击时,调用 refresh_table_data 函数来更新表格
refresh_button.click(
fn=refresh_table_data,
outputs=[table1, table2]
)
gr.Markdown("## Upload Your Own Results")
gr.Markdown("""
If you would like to contribute to the leaderboard, please follow the JSON structure below for your method's scores.
**Solvable Pass Rate Scores Template:**
```json
{
"SolvablePassRateScores": [
{
"Method": "Your Method Name",
"Scores": {
"I1 Instruction": 85.5,
"I1 Instruction SE": 1.2,
"I1 Category": 80.0,
"I1 Category SE": 1.0,
"I1 Tool": 88.5,
"I1 Tool SE": 0.8,
"I2 Category": 82.5,
"I2 Category SE": 1.3,
"I2 Instruction": 86.0,
"I2 Instruction SE": 0.5,
"I3 Instruction": 90.0,
"I3 Instruction SE": 0.7,
"Average": 87.5,
"Average SE": 1.1
}
}
// Add more methods here...
],
"SolvableWinRateScores": [
{
"Method": "Your Method Name",
"Scores": {
"I1 Instruction": 65.0,
"I1 Category": 68.5,
"I1 Tool": 66.8,
"I2 Category": 70.0,
"I2 Instruction": 69.2,
"I3 Instruction": 71.5,
"Average": 68.5
}
}
// Add more methods here...
]
}
```
Make sure your uploaded JSON file follows this structure.
""")
# 文件上传组件和提交按钮
upload_component = gr.File(label="Upload JSON File")
submit_button = gr.Button("Submit")
submit_button.click(
fn=process_file,
inputs= upload_component,
outputs=[table1, table2]
)
# 引用部分
gr.Markdown(" ## If you like our project, please consider cite our work as follows: ")
citation_text = """
```
@misc{guo2024stabletoolbench,
title={StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models},
author={Zhicheng Guo and Sijie Cheng and Hao Wang and Shihao Liang and Yujia Qin and Peng Li and Zhiyuan Liu and Maosong Sun and Yang Liu},
year={2024},
eprint={2403.07714},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
"""
gr.Markdown(citation_text)
if __name__ == "__main__":
app.launch()
scheduler.commit() # Ensure all changes are committed on exit
|