EXTRA / dd
Jarnails1559's picture
Create dd
75bda9c
import gradio as gr
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics
# Load Iris dataset
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
# Train a Support Vector Classifier
clf = svm.SVC(kernel='linear')
clf.fit(X_train, y_train)
def iris_classifier(sepal_length, sepal_width, petal_length, petal_width):
prediction = clf.predict([[sepal_length, sepal_width, petal_length, petal_width]])
return iris.target_names[prediction[0]]
iface = gr.Interface(
fn=iris_classifier,
inputs=["number", "number", "number", "number"],
outputs="text",
title="Iris Classifier",
description="Enter the measurements of an iris flower to predict its species."
)
iface.launch()