Update model_loader.py
Browse files- model_loader.py +45 -19
model_loader.py
CHANGED
|
@@ -1,54 +1,80 @@
|
|
| 1 |
# model_loader.py
|
| 2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
# Classifier Model (XLM-RoBERTa for toxicity classification)
|
| 6 |
class ClassifierModel:
|
| 7 |
def __init__(self):
|
| 8 |
self.model = None
|
| 9 |
self.tokenizer = None
|
| 10 |
-
self.
|
|
|
|
| 11 |
|
| 12 |
-
def
|
| 13 |
"""
|
| 14 |
-
Load the fine-tuned XLM-RoBERTa model and tokenizer for
|
| 15 |
"""
|
| 16 |
try:
|
| 17 |
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone"
|
|
|
|
| 18 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 19 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name
|
|
|
|
|
|
|
|
|
|
| 20 |
except Exception as e:
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
# Paraphraser Model (Granite 3.2-2B-Instruct for paraphrasing)
|
| 24 |
class ParaphraserModel:
|
| 25 |
def __init__(self):
|
| 26 |
self.model = None
|
| 27 |
self.tokenizer = None
|
| 28 |
-
self.
|
|
|
|
| 29 |
|
| 30 |
-
def
|
| 31 |
"""
|
| 32 |
-
Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing.
|
| 33 |
"""
|
| 34 |
try:
|
| 35 |
model_name = "ibm-granite/granite-3.2-2b-instruct"
|
|
|
|
| 36 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 37 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
except Exception as e:
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
# Metrics Models (Sentence-BERT only)
|
| 42 |
class MetricsModels:
|
| 43 |
def __init__(self):
|
| 44 |
-
self.
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def load_sentence_bert(self):
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
# Singleton instances
|
| 52 |
-
classifier_model = ClassifierModel()
|
| 53 |
-
paraphraser_model = ParaphraserModel()
|
| 54 |
metrics_models = MetricsModels()
|
|
|
|
| 1 |
# model_loader.py
|
| 2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
|
|
|
|
| 7 |
class ClassifierModel:
|
| 8 |
def __init__(self):
|
| 9 |
self.model = None
|
| 10 |
self.tokenizer = None
|
| 11 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
self.load_classifier_model()
|
| 13 |
|
| 14 |
+
def load_classifier_model(self):
|
| 15 |
"""
|
| 16 |
+
Load the fine-tuned XLM-RoBERTa model and tokenizer for toxicity classification.
|
| 17 |
"""
|
| 18 |
try:
|
| 19 |
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone"
|
| 20 |
+
print(f"Loading classifier model: {model_name}")
|
| 21 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 22 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
+
self.model.to(self.device)
|
| 24 |
+
self.model.eval()
|
| 25 |
+
print("Classifier model loaded successfully")
|
| 26 |
except Exception as e:
|
| 27 |
+
print(f"Error loading classifier model: {str(e)}")
|
| 28 |
+
raise
|
| 29 |
+
|
| 30 |
+
classifier_model = ClassifierModel()
|
| 31 |
|
|
|
|
| 32 |
class ParaphraserModel:
|
| 33 |
def __init__(self):
|
| 34 |
self.model = None
|
| 35 |
self.tokenizer = None
|
| 36 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 37 |
+
self.load_paraphraser_model()
|
| 38 |
|
| 39 |
+
def load_paraphraser_model(self):
|
| 40 |
"""
|
| 41 |
+
Load the fine-tuned Granite 3.2-2B-Instruct model and tokenizer for paraphrasing.
|
| 42 |
"""
|
| 43 |
try:
|
| 44 |
model_name = "ibm-granite/granite-3.2-2b-instruct"
|
| 45 |
+
print(f"Loading paraphraser model: {model_name}")
|
| 46 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 47 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 48 |
+
# Set a distinct pad token to avoid conflict with eos token
|
| 49 |
+
if self.tokenizer.pad_token is None or self.tokenizer.pad_token == self.tokenizer.eos_token:
|
| 50 |
+
self.tokenizer.pad_token = "<pad>"
|
| 51 |
+
self.model.config.pad_token_id = self.tokenizer.convert_tokens_to_ids("<pad>")
|
| 52 |
+
self.model.to(self.device)
|
| 53 |
+
self.model.eval()
|
| 54 |
+
print("Paraphraser model loaded successfully")
|
| 55 |
except Exception as e:
|
| 56 |
+
print(f"Error loading paraphraser model: {str(e)}")
|
| 57 |
+
raise
|
| 58 |
+
|
| 59 |
+
paraphraser_model = ParaphraserModel()
|
| 60 |
|
|
|
|
| 61 |
class MetricsModels:
|
| 62 |
def __init__(self):
|
| 63 |
+
self.sentence_bert = None
|
| 64 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 65 |
+
self.load_sentence_bert()
|
| 66 |
|
| 67 |
def load_sentence_bert(self):
|
| 68 |
+
"""
|
| 69 |
+
Load the Sentence-BERT model for computing semantic similarity.
|
| 70 |
+
"""
|
| 71 |
+
try:
|
| 72 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
| 73 |
+
print(f"Loading Sentence-BERT model: {model_name}")
|
| 74 |
+
self.sentence_bert = SentenceTransformer(model_name, device=self.device)
|
| 75 |
+
print("Sentence-BERT model loaded successfully")
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"Error loading Sentence-BERT model: {str(e)}")
|
| 78 |
+
raise
|
| 79 |
|
|
|
|
|
|
|
|
|
|
| 80 |
metrics_models = MetricsModels()
|