Update classifier.py
Browse files- classifier.py +43 -12
classifier.py
CHANGED
|
@@ -1,21 +1,23 @@
|
|
| 1 |
# classifier.py
|
| 2 |
import torch
|
| 3 |
-
from model_loader import
|
|
|
|
| 4 |
|
| 5 |
def classify_toxic_comment(comment):
|
| 6 |
"""
|
| 7 |
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model.
|
| 8 |
-
|
|
|
|
| 9 |
"""
|
| 10 |
if not comment.strip():
|
| 11 |
-
return "Error: Please enter a comment.", None, None, None, None
|
| 12 |
|
| 13 |
# Tokenize the input comment
|
| 14 |
-
inputs =
|
| 15 |
|
| 16 |
# Run inference
|
| 17 |
with torch.no_grad():
|
| 18 |
-
outputs =
|
| 19 |
logits = outputs.logits
|
| 20 |
|
| 21 |
# Get the predicted class (0 = non-toxic, 1 = toxic)
|
|
@@ -24,14 +26,43 @@ def classify_toxic_comment(comment):
|
|
| 24 |
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
|
| 25 |
label_color = "red" if label == "Toxic" else "green"
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
toxicity_score = torch.softmax(logits, dim=1)[0][1].item() # Probability of toxic class
|
| 30 |
toxicity_score = round(toxicity_score, 2)
|
| 31 |
|
| 32 |
-
# Simulate Bias Score (
|
| 33 |
-
|
| 34 |
-
bias_score = 0.01 if label == "Non-Toxic" else 0.15 # Placeholder logic
|
| 35 |
bias_score = round(bias_score, 2)
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# classifier.py
|
| 2 |
import torch
|
| 3 |
+
from model_loader import classifier_model, classifier_tokenizer
|
| 4 |
+
from paraphraser import paraphrase_comment
|
| 5 |
|
| 6 |
def classify_toxic_comment(comment):
|
| 7 |
"""
|
| 8 |
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model.
|
| 9 |
+
If toxic, paraphrase the comment and re-evaluate.
|
| 10 |
+
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
| 11 |
"""
|
| 12 |
if not comment.strip():
|
| 13 |
+
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None
|
| 14 |
|
| 15 |
# Tokenize the input comment
|
| 16 |
+
inputs = classifier_tokenizer(comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 17 |
|
| 18 |
# Run inference
|
| 19 |
with torch.no_grad():
|
| 20 |
+
outputs = classifier_model(**inputs)
|
| 21 |
logits = outputs.logits
|
| 22 |
|
| 23 |
# Get the predicted class (0 = non-toxic, 1 = toxic)
|
|
|
|
| 26 |
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
|
| 27 |
label_color = "red" if label == "Toxic" else "green"
|
| 28 |
|
| 29 |
+
# Compute Toxicity Score (approximated as the probability of the toxic class)
|
| 30 |
+
toxicity_score = torch.softmax(logits, dim=1)[0][1].item()
|
|
|
|
| 31 |
toxicity_score = round(toxicity_score, 2)
|
| 32 |
|
| 33 |
+
# Simulate Bias Score (placeholder)
|
| 34 |
+
bias_score = 0.01 if label == "Non-Toxic" else 0.15
|
|
|
|
| 35 |
bias_score = round(bias_score, 2)
|
| 36 |
|
| 37 |
+
# If the comment is toxic, paraphrase it
|
| 38 |
+
paraphrased_comment = None
|
| 39 |
+
paraphrased_prediction = None
|
| 40 |
+
paraphrased_confidence = None
|
| 41 |
+
paraphrased_color = None
|
| 42 |
+
paraphrased_toxicity_score = None
|
| 43 |
+
paraphrased_bias_score = None
|
| 44 |
+
|
| 45 |
+
if label == "Toxic":
|
| 46 |
+
# Paraphrase the comment
|
| 47 |
+
paraphrased_comment = paraphrase_comment(comment)
|
| 48 |
+
|
| 49 |
+
# Re-evaluate the paraphrased comment
|
| 50 |
+
paraphrased_inputs = classifier_tokenizer(paraphrased_comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
paraphrased_outputs = classifier_model(**paraphrased_inputs)
|
| 53 |
+
paraphrased_logits = paraphrased_outputs.logits
|
| 54 |
+
|
| 55 |
+
paraphrased_predicted_class = torch.argmax(paraphrased_logits, dim=1).item()
|
| 56 |
+
paraphrased_label = "Toxic" if paraphrased_predicted_class == 1 else "Non-Toxic"
|
| 57 |
+
paraphrased_confidence = torch.softmax(paraphrased_logits, dim=1)[0][paraphrased_predicted_class].item()
|
| 58 |
+
paraphrased_color = "red" if paraphrased_label == "Toxic" else "green"
|
| 59 |
+
paraphrased_toxicity_score = torch.softmax(paraphrased_logits, dim=1)[0][1].item()
|
| 60 |
+
paraphrased_toxicity_score = round(paraphrased_toxicity_score, 2)
|
| 61 |
+
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder
|
| 62 |
+
paraphrased_bias_score = round(paraphrased_bias_score, 2)
|
| 63 |
+
|
| 64 |
+
return (
|
| 65 |
+
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
| 66 |
+
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
| 67 |
+
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score
|
| 68 |
+
)
|