|
|
|
import nltk |
|
|
|
from rouge_score import rouge_scorer |
|
from model_loader import metrics_models |
|
|
|
|
|
nltk.download('punkt') |
|
|
|
def compute_semantic_similarity(original, paraphrased): |
|
""" |
|
Compute semantic similarity between the original and paraphrased comment using Sentence-BERT. |
|
Returns a similarity score between 0 and 1. |
|
""" |
|
try: |
|
sentence_bert = metrics_models.load_sentence_bert() |
|
embeddings = sentence_bert.encode([original, paraphrased]) |
|
similarity = float(embeddings[0] @ embeddings[1].T) |
|
return round(similarity, 2) |
|
except Exception as e: |
|
print(f"Error computing semantic similarity: {str(e)}") |
|
return None |
|
|
|
def compute_empathy_score(paraphrased): |
|
""" |
|
Compute an empathy score for the paraphrased comment (placeholder). |
|
Returns a score between 0 and 1. |
|
""" |
|
try: |
|
|
|
empathy_words = ["sorry", "understand", "care", "help", "support"] |
|
words = paraphrased.lower().split() |
|
empathy_count = sum(1 for word in words if word in empathy_words) |
|
score = empathy_count / len(words) if words else 0 |
|
return round(score, 2) |
|
except Exception as e: |
|
print(f"Error computing empathy score: {str(e)}") |
|
return None |
|
|
|
|
|
def compute_rouge_score(original, paraphrased): |
|
""" |
|
Compute ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-L) between the original and paraphrased comment. |
|
Returns a dictionary with ROUGE scores. |
|
""" |
|
try: |
|
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) |
|
scores = scorer.score(original, paraphrased) |
|
return { |
|
'rouge1': round(scores['rouge1'].fmeasure, 2), |
|
'rouge2': round(scores['rouge2'].fmeasure, 2), |
|
'rougeL': round(scores['rougeL'].fmeasure, 2) |
|
} |
|
except Exception as e: |
|
print(f"Error computing ROUGE scores: {str(e)}") |
|
return None |