Spaces:
Runtime error
Runtime error
File size: 45,009 Bytes
20c36d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 |
#!/usr/bin/env python3
import cv2, os, subprocess, argparse
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, SamModel, SamProcessor
from tqdm import tqdm
import numpy as np
from datetime import datetime
from deep_sort_integration import DeepSORTTracker
from scenedetect import detect, ContentDetector
from functools import lru_cache
# Constants
DEFAULT_TEST_MODE_DURATION = 3 # Process only first 3 seconds in test mode by default
FFMPEG_PRESETS = [
"ultrafast",
"superfast",
"veryfast",
"faster",
"fast",
"medium",
"slow",
"slower",
"veryslow",
]
FONT = cv2.FONT_HERSHEY_SIMPLEX # Font for bounding-box-style labels
# Detection parameters
IOU_THRESHOLD = 0.5 # IoU threshold for considering boxes related
# Hitmarker parameters
HITMARKER_SIZE = 20 # Size of the hitmarker in pixels
HITMARKER_GAP = 3 # Size of the empty space in the middle (reduced from 8)
HITMARKER_THICKNESS = 2 # Thickness of hitmarker lines
HITMARKER_COLOR = (255, 255, 255) # White color for hitmarker
HITMARKER_SHADOW_COLOR = (80, 80, 80) # Lighter gray for shadow effect
HITMARKER_SHADOW_OFFSET = 1 # Smaller shadow offset
# SAM parameters
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize model variables as None
sam_model = None
sam_processor = None
slimsam_model = None
slimsam_processor = None
@lru_cache(maxsize=2) # Cache both regular and slim SAM models
def get_sam_model(slim=False):
"""Get cached SAM model and processor."""
global sam_model, sam_processor, slimsam_model, slimsam_processor
if slim:
if slimsam_model is None:
print("Loading SlimSAM model for the first time...")
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to(device)
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
return slimsam_model, slimsam_processor
else:
if sam_model is None:
print("Loading SAM model for the first time...")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
return sam_model, sam_processor
def load_sam_model(slim=False):
"""Load SAM model and processor with caching."""
return get_sam_model(slim=slim)
def generate_color_pair():
"""Generate a generic light blue and dark blue color pair for SAM visualization."""
dark_rgb = [0, 0, 139] # Dark blue
light_rgb = [173, 216, 230] # Light blue
return dark_rgb, light_rgb
def create_mask_overlay(image, masks, points=None, labels=None):
"""Create a mask overlay with contours for multiple SAM visualizations.
Args:
image: PIL Image to overlay masks on
masks: List of binary masks or single mask
points: Optional list of (x,y) points for labels
labels: Optional list of label strings for each point
"""
# Convert single mask to list for uniform processing
if not isinstance(masks, list):
masks = [masks]
# Create empty overlays
overlay = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
outline = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
# Process each mask
for i, mask in enumerate(masks):
# Convert binary mask to uint8
mask_uint8 = (mask > 0).astype(np.uint8)
# Dilation to fill gaps
kernel = np.ones((5, 5), np.uint8)
mask_dilated = cv2.dilate(mask_uint8, kernel, iterations=1)
# Find contours of the dilated mask
contours, _ = cv2.findContours(mask_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Generate random color pair for this segmentation
dark_color, light_color = generate_color_pair()
# Add to the overlays
overlay[mask_dilated > 0] = [*light_color, 90] # Light color with 35% opacity
cv2.drawContours(outline, contours, -1, (*dark_color, 255), 2) # Dark color outline
# Convert to PIL images
mask_overlay = Image.fromarray(overlay, 'RGBA')
outline_overlay = Image.fromarray(outline, 'RGBA')
# Composite the layers
result = image.convert('RGBA')
result.paste(mask_overlay, (0, 0), mask_overlay)
result.paste(outline_overlay, (0, 0), outline_overlay)
# Add labels if provided
if points and labels:
result_array = np.array(result)
for (x, y), label in zip(points, labels):
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
cv2.putText(
result_array,
label,
(int(x - label_size[0] // 2), int(y - 20)),
FONT,
0.5,
(255, 255, 255),
1,
cv2.LINE_AA,
)
result = Image.fromarray(result_array)
return result
def process_sam_detection(image, center_x, center_y, slim=False):
"""Process a single detection point with SAM.
Returns:
tuple: (mask, result_pil) where mask is the binary mask and result_pil is the visualization
"""
if not isinstance(image, Image.Image):
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Get appropriate model from cache
model, processor = get_sam_model(slim)
# Process the image with SAM
inputs = processor(
image,
input_points=[[[center_x, center_y]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = model(**inputs)
mask = processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
# Create the visualization
result = create_mask_overlay(image, mask)
return mask, result
def load_moondream():
"""Load Moondream model and tokenizer."""
model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
)
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
return model, tokenizer
def get_video_properties(video_path):
"""Get basic video properties."""
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
return {"fps": fps, "frame_count": frame_count, "width": width, "height": height}
def is_valid_bounding_box(bounding_box):
"""Check if bounding box coordinates are reasonable."""
x1, y1, x2, y2 = bounding_box
width = x2 - x1
height = y2 - y1
# Reject boxes that are too large (over 90% of frame in both dimensions)
if width > 0.9 and height > 0.9:
return False
# Reject boxes that are too small (less than 1% of frame)
if width < 0.01 or height < 0.01:
return False
return True
def split_frame_into_grid(frame, grid_rows, grid_cols):
"""Split a frame into a grid of tiles."""
height, width = frame.shape[:2]
tile_height = height // grid_rows
tile_width = width // grid_cols
tiles = []
tile_positions = []
for i in range(grid_rows):
for j in range(grid_cols):
y1 = i * tile_height
y2 = (i + 1) * tile_height if i < grid_rows - 1 else height
x1 = j * tile_width
x2 = (j + 1) * tile_width if j < grid_cols - 1 else width
tile = frame[y1:y2, x1:x2]
tiles.append(tile)
tile_positions.append((x1, y1, x2, y2))
return tiles, tile_positions
def convert_tile_coords_to_frame(box, tile_pos, frame_shape):
"""Convert coordinates from tile space to frame space."""
frame_height, frame_width = frame_shape[:2]
tile_x1, tile_y1, tile_x2, tile_y2 = tile_pos
tile_width = tile_x2 - tile_x1
tile_height = tile_y2 - tile_y1
x1_tile_abs = box[0] * tile_width
y1_tile_abs = box[1] * tile_height
x2_tile_abs = box[2] * tile_width
y2_tile_abs = box[3] * tile_height
x1_frame_abs = tile_x1 + x1_tile_abs
y1_frame_abs = tile_y1 + y1_tile_abs
x2_frame_abs = tile_x1 + x2_tile_abs
y2_frame_abs = tile_y1 + y2_tile_abs
x1_norm = x1_frame_abs / frame_width
y1_norm = y1_frame_abs / frame_height
x2_norm = x2_frame_abs / frame_width
y2_norm = y2_frame_abs / frame_height
x1_norm = max(0.0, min(1.0, x1_norm))
y1_norm = max(0.0, min(1.0, y1_norm))
x2_norm = max(0.0, min(1.0, x2_norm))
y2_norm = max(0.0, min(1.0, y2_norm))
return [x1_norm, y1_norm, x2_norm, y2_norm]
def merge_tile_detections(tile_detections, iou_threshold=0.5):
"""Merge detections from different tiles using NMS-like approach."""
if not tile_detections:
return []
all_boxes = []
all_keywords = []
# Collect all boxes and their keywords
for detections in tile_detections:
for box, keyword in detections:
all_boxes.append(box)
all_keywords.append(keyword)
if not all_boxes:
return []
# Convert to numpy for easier processing
boxes = np.array(all_boxes)
# Calculate areas
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1) * (y2 - y1)
# Sort boxes by area
order = areas.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
if order.size == 1:
break
# Calculate IoU with rest of boxes
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
# Get indices of boxes with IoU less than threshold
inds = np.where(ovr <= iou_threshold)[0]
order = order[inds + 1]
return [(all_boxes[i], all_keywords[i]) for i in keep]
def detect_objects_in_frame(model, tokenizer, image, target_object, grid_rows=1, grid_cols=1):
"""Detect specified objects in a frame using grid-based analysis."""
if grid_rows == 1 and grid_cols == 1:
return detect_objects_in_frame_single(model, tokenizer, image, target_object)
# Convert numpy array to PIL Image if needed
if not isinstance(image, Image.Image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Split frame into tiles
tiles, tile_positions = split_frame_into_grid(image, grid_rows, grid_cols)
# Process each tile
tile_detections = []
for tile, tile_pos in zip(tiles, tile_positions):
# Convert tile to PIL Image
tile_pil = Image.fromarray(tile)
# Detect objects in tile
response = model.detect(tile_pil, target_object)
if response and "objects" in response and response["objects"]:
objects = response["objects"]
tile_objects = []
for obj in objects:
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
if is_valid_bounding_box(box):
# Convert tile coordinates to frame coordinates
frame_box = convert_tile_coords_to_frame(
box, tile_pos, image.shape
)
tile_objects.append((frame_box, target_object))
if tile_objects: # Only append if we found valid objects
tile_detections.append(tile_objects)
# Merge detections from all tiles
merged_detections = merge_tile_detections(tile_detections)
return merged_detections
def detect_objects_in_frame_single(model, tokenizer, image, target_object):
"""Single-frame detection function."""
detected_objects = []
# Convert numpy array to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Detect objects
response = model.detect(image, target_object)
# Check if we have valid objects
if response and "objects" in response and response["objects"]:
objects = response["objects"]
for obj in objects:
if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
# If box is valid (not full-frame), add it
if is_valid_bounding_box(box):
detected_objects.append((box, target_object))
return detected_objects
def draw_hitmarker(
frame, center_x, center_y, size=HITMARKER_SIZE, color=HITMARKER_COLOR, shadow=True
):
"""Draw a COD-style hitmarker cross with more space in the middle."""
half_size = size // 2
# Draw shadow first if enabled
if shadow:
# Top-left to center shadow
cv2.line(
frame,
(
center_x - half_size + HITMARKER_SHADOW_OFFSET,
center_y - half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Top-right to center shadow
cv2.line(
frame,
(
center_x + half_size + HITMARKER_SHADOW_OFFSET,
center_y - half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Bottom-left to center shadow
cv2.line(
frame,
(
center_x - half_size + HITMARKER_SHADOW_OFFSET,
center_y + half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Bottom-right to center shadow
cv2.line(
frame,
(
center_x + half_size + HITMARKER_SHADOW_OFFSET,
center_y + half_size + HITMARKER_SHADOW_OFFSET,
),
(
center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
),
HITMARKER_SHADOW_COLOR,
HITMARKER_THICKNESS,
)
# Draw main hitmarker
# Top-left to center
cv2.line(
frame,
(center_x - half_size, center_y - half_size),
(center_x - HITMARKER_GAP, center_y - HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Top-right to center
cv2.line(
frame,
(center_x + half_size, center_y - half_size),
(center_x + HITMARKER_GAP, center_y - HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Bottom-left to center
cv2.line(
frame,
(center_x - half_size, center_y + half_size),
(center_x - HITMARKER_GAP, center_y + HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
# Bottom-right to center
cv2.line(
frame,
(center_x + half_size, center_y + half_size),
(center_x + HITMARKER_GAP, center_y + HITMARKER_GAP),
color,
HITMARKER_THICKNESS,
)
def draw_ad_boxes(frame, detected_objects, detect_keyword, model, box_style="censor"):
height, width = frame.shape[:2]
points = []
# Only get points if we need them for hitmarker or SAM styles
if box_style in ["hitmarker", "sam", "sam-fast"]:
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
try:
point_response = model.point(frame_pil, detect_keyword)
if isinstance(point_response, dict) and 'points' in point_response:
points = point_response['points']
except Exception as e:
print(f"Error during point detection: {str(e)}")
points = []
# Only load SAM models and process points if we're using SAM styles and have points
if box_style in ["sam", "sam-fast"] and points:
# Start with the original PIL image
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Collect all masks and points
all_masks = []
point_coords = []
point_labels = []
for point in points:
try:
center_x = int(float(point["x"]) * width)
center_y = int(float(point["y"]) * height)
# Get mask and visualization
mask, _ = process_sam_detection(frame_pil, center_x, center_y, slim=(box_style == "sam-fast"))
# Collect mask and point data
all_masks.append(mask)
point_coords.append((center_x, center_y))
point_labels.append(detect_keyword)
except Exception as e:
print(f"Error processing individual SAM point: {str(e)}")
print(f"Point data: {point}")
if all_masks:
# Create final visualization with all masks
result_pil = create_mask_overlay(frame_pil, all_masks, point_coords, point_labels)
frame = cv2.cvtColor(np.array(result_pil), cv2.COLOR_RGB2BGR)
# Process other visualization styles
for detection in detected_objects:
try:
# Handle both tracked and untracked detections
if len(detection) == 3: # Tracked detection with ID
box, keyword, track_id = detection
else: # Regular detection without tracking
box, keyword = detection
track_id = None
x1 = int(box[0] * width)
y1 = int(box[1] * height)
x2 = int(box[2] * width)
y2 = int(box[3] * height)
x1 = max(0, min(x1, width - 1))
y1 = max(0, min(y1, height - 1))
x2 = max(0, min(x2, width - 1))
y2 = max(0, min(y2, height - 1))
if x2 > x1 and y2 > y1:
if box_style == "censor":
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), -1)
elif box_style == "bounding-box":
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
label = f"{detect_keyword}" if track_id is not None else detect_keyword
label_size = cv2.getTextSize(label, FONT, 0.7, 2)[0]
cv2.rectangle(
frame, (x1, y1 - 25), (x1 + label_size[0], y1), (0, 0, 255), -1
)
cv2.putText(
frame,
label,
(x1, y1 - 6),
FONT,
0.7,
(255, 255, 255),
2,
cv2.LINE_AA,
)
elif box_style == "fuzzy-blur":
# Extract ROI
roi = frame[y1:y2, x1:x2]
# Apply Gaussian blur with much larger kernel for intense blur
blurred_roi = cv2.GaussianBlur(roi, (125, 125), 0)
# Replace original ROI with blurred version
frame[y1:y2, x1:x2] = blurred_roi
elif box_style == "pixelated-blur":
# Extract ROI
roi = frame[y1:y2, x1:x2]
# Pixelate by resizing down and up
h, w = roi.shape[:2]
temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
# Mix up the pixelated frame slightly by adding random noise
noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
pixelated = cv2.add(pixelated, noise)
# Apply stronger Gaussian blur to smooth edges
blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
# Replace original ROI
frame[y1:y2, x1:x2] = blurred_pixelated
elif box_style == "obfuscated-pixel":
# Calculate expansion amount based on 10% of object dimensions
box_width = x2 - x1
box_height = y2 - y1
expand_x = int(box_width * 0.10)
expand_y = int(box_height * 0.10)
# Expand the bounding box by 10% in all directions
x1_expanded = max(0, x1 - expand_x)
y1_expanded = max(0, y1 - expand_y)
x2_expanded = min(width - 1, x2 + expand_x)
y2_expanded = min(height - 1, y2 + expand_y)
# Extract ROI with much larger padding for true background sampling
padding = 100 # Much larger padding to get true background
y1_pad = max(0, y1_expanded - padding)
y2_pad = min(height, y2_expanded + padding)
x1_pad = max(0, x1_expanded - padding)
x2_pad = min(width, x2_expanded + padding)
# Get the padded region including background
padded_roi = frame[y1_pad:y2_pad, x1_pad:x2_pad]
# Create mask that excludes a larger region around the detection
h, w = y2_expanded - y1_expanded, x2_expanded - x1_expanded
bg_mask = np.ones(padded_roi.shape[:2], dtype=bool)
# Exclude a larger region around the detection from background sampling
exclusion_padding = 50 # Area to exclude around detection
exclude_y1 = padding - exclusion_padding
exclude_y2 = padding + h + exclusion_padding
exclude_x1 = padding - exclusion_padding
exclude_x2 = padding + w + exclusion_padding
# Make sure exclusion coordinates are valid
exclude_y1 = max(0, exclude_y1)
exclude_y2 = min(padded_roi.shape[0], exclude_y2)
exclude_x1 = max(0, exclude_x1)
exclude_x2 = min(padded_roi.shape[1], exclude_x2)
# Mark the exclusion zone in the mask
bg_mask[exclude_y1:exclude_y2, exclude_x1:exclude_x2] = False
# If we have enough background pixels, calculate average color
if np.any(bg_mask):
bg_color = np.mean(padded_roi[bg_mask], axis=0).astype(np.uint8)
else:
# Fallback to edges if we couldn't get enough background
edge_samples = np.concatenate([
padded_roi[0], # Top edge
padded_roi[-1], # Bottom edge
padded_roi[:, 0], # Left edge
padded_roi[:, -1] # Right edge
])
bg_color = np.mean(edge_samples, axis=0).astype(np.uint8)
# Create base pixelated version (of the expanded region)
temp = cv2.resize(frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded],
(6, 6), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
# Blend heavily towards background color
blend_factor = 0.9 # Much stronger blend with background
blended = cv2.addWeighted(
pixelated, 1 - blend_factor,
np.full((h, w, 3), bg_color, dtype=np.uint8), blend_factor,
0
)
# Replace original ROI with blended version (using expanded coordinates)
frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blended
elif box_style == "intense-pixelated-blur":
# Expand the bounding box by pixels in all directions
x1_expanded = max(0, x1 - 15)
y1_expanded = max(0, y1 - 15)
x2_expanded = min(width - 1, x2 + 25)
y2_expanded = min(height - 1, y2 + 25)
# Extract ROI
roi = frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded]
# Pixelate by resizing down and up
h, w = roi.shape[:2]
temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
# Mix up the pixelated frame slightly by adding random noise
noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
pixelated = cv2.add(pixelated, noise)
# Apply stronger Gaussian blur to smooth edges
blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
# Replace original ROI
frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blurred_pixelated
elif box_style == "hitmarker":
if points:
for point in points:
try:
print(f"Processing point: {point}")
center_x = int(float(point["x"]) * width)
center_y = int(float(point["y"]) * height)
print(f"Converted coordinates: ({center_x}, {center_y})")
draw_hitmarker(frame, center_x, center_y)
label = f"{detect_keyword}" if track_id is not None else detect_keyword
label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
cv2.putText(
frame,
label,
(center_x - label_size[0] // 2, center_y - HITMARKER_SIZE - 5),
FONT,
0.5,
HITMARKER_COLOR,
1,
cv2.LINE_AA,
)
except Exception as e:
print(f"Error processing individual point: {str(e)}")
print(f"Point data: {point}")
except Exception as e:
print(f"Error drawing {box_style} style box: {str(e)}")
print(f"Box data: {box}")
print(f"Keyword: {keyword}")
return frame
def filter_temporal_outliers(detections_dict):
"""Filter out extremely large detections that take up most of the frame.
Only keeps detections that are reasonable in size.
Args:
detections_dict: Dictionary of {frame_number: [(box, keyword, track_id), ...]}
"""
filtered_detections = {}
for t, detections in detections_dict.items():
# Only keep detections that aren't too large
valid_detections = []
for detection in detections:
# Handle both tracked and untracked detections
if len(detection) == 3: # Tracked detection with ID
box, keyword, track_id = detection
else: # Regular detection without tracking
box, keyword = detection
track_id = None
# Calculate box size as percentage of frame
width = box[2] - box[0]
height = box[3] - box[1]
area = width * height
# If box is less than 90% of frame, keep it
if area < 0.9:
if track_id is not None:
valid_detections.append((box, keyword, track_id))
else:
valid_detections.append((box, keyword))
if valid_detections:
filtered_detections[t] = valid_detections
return filtered_detections
def describe_frames(video_path, model, tokenizer, detect_keyword, test_mode=False, test_duration=DEFAULT_TEST_MODE_DURATION, grid_rows=1, grid_cols=1):
"""Extract and detect objects in frames."""
props = get_video_properties(video_path)
fps = props["fps"]
# Initialize DeepSORT tracker
tracker = DeepSORTTracker()
# If in test mode, only process first N seconds
if test_mode:
frame_count = min(int(fps * test_duration), props["frame_count"])
else:
frame_count = props["frame_count"]
ad_detections = {} # Store detection results by frame number
print("Extracting frames and detecting objects...")
video = cv2.VideoCapture(video_path)
# Detect scenes first
scenes = detect(video_path, scene_detector)
scene_changes = set(end.get_frames() for _, end in scenes)
print(f"Detected {len(scenes)} scenes")
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Check if current frame is a scene change
if frame_count_processed in scene_changes:
# Detect objects in the frame
detected_objects = detect_objects_in_frame(
model, tokenizer, frame, detect_keyword, grid_rows=grid_rows, grid_cols=grid_cols
)
# Update tracker with current detections
tracked_objects = tracker.update(frame, detected_objects)
# Store results for every frame, even if empty
ad_detections[frame_count_processed] = tracked_objects
frame_count_processed += 1
pbar.update(1)
video.release()
if frame_count_processed == 0:
print("No frames could be read from video")
return {}
return ad_detections
def create_detection_video(
video_path,
ad_detections,
detect_keyword,
model,
output_path=None,
ffmpeg_preset="medium",
test_mode=False,
test_duration=DEFAULT_TEST_MODE_DURATION,
box_style="censor",
):
"""Create video with detection boxes while preserving audio."""
if output_path is None:
# Create outputs directory if it doesn't exist
outputs_dir = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "outputs"
)
os.makedirs(outputs_dir, exist_ok=True)
# Clean the detect_keyword for filename
safe_keyword = "".join(
x for x in detect_keyword if x.isalnum() or x in (" ", "_", "-")
)
safe_keyword = safe_keyword.replace(" ", "_")
# Create output filename
base_name = os.path.splitext(os.path.basename(video_path))[0]
output_path = os.path.join(
outputs_dir, f"{box_style}_{safe_keyword}_{base_name}.mp4"
)
print(f"Will save output to: {output_path}")
props = get_video_properties(video_path)
fps, width, height = props["fps"], props["width"], props["height"]
# If in test mode, only process first few seconds
if test_mode:
frame_count = min(int(fps * test_duration), props["frame_count"])
print(f"Test mode enabled: Processing first {test_duration} seconds ({frame_count} frames)")
else:
frame_count = props["frame_count"]
print("Full video mode: Processing entire video")
video = cv2.VideoCapture(video_path)
# Create temp output path by adding _temp before the extension
base, ext = os.path.splitext(output_path)
temp_output = f"{base}_temp{ext}"
temp_audio = f"{base}_audio.aac" # Temporary audio file
out = cv2.VideoWriter(
temp_output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
)
print("Creating detection video...")
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Get detections for this exact frame
if frame_count_processed in ad_detections:
current_detections = ad_detections[frame_count_processed]
if current_detections:
frame = draw_ad_boxes(
frame, current_detections, detect_keyword, model, box_style=box_style
)
out.write(frame)
frame_count_processed += 1
pbar.update(1)
video.release()
out.release()
# Extract audio from original video
try:
if test_mode:
# In test mode, extract only the required duration of audio
subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-t",
str(test_duration),
"-vn", # No video
"-acodec",
"copy",
temp_audio,
],
check=True,
)
else:
subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-vn", # No video
"-acodec",
"copy",
temp_audio,
],
check=True,
)
except subprocess.CalledProcessError as e:
print(f"Error extracting audio: {str(e)}")
if os.path.exists(temp_output):
os.remove(temp_output)
return None
# Merge processed video with original audio
try:
# Base FFmpeg command
ffmpeg_cmd = [
"ffmpeg",
"-y",
"-i",
temp_output,
"-i",
temp_audio,
"-c:v",
"libx264",
"-preset",
ffmpeg_preset,
"-crf",
"23",
"-c:a",
"aac",
"-b:a",
"192k",
"-movflags",
"+faststart", # Better web playback
]
if test_mode:
# In test mode, ensure output duration matches test_duration
ffmpeg_cmd.extend([
"-t",
str(test_duration),
"-shortest" # Ensure output duration matches shortest input
])
ffmpeg_cmd.extend([
"-loglevel",
"error",
output_path
])
subprocess.run(ffmpeg_cmd, check=True)
# Clean up temporary files
os.remove(temp_output)
os.remove(temp_audio)
if not os.path.exists(output_path):
print(
f"Warning: FFmpeg completed but output file not found at {output_path}"
)
return None
return output_path
except subprocess.CalledProcessError as e:
print(f"Error merging audio with video: {str(e)}")
if os.path.exists(temp_output):
os.remove(temp_output)
if os.path.exists(temp_audio):
os.remove(temp_audio)
return None
def process_video(
video_path,
target_object,
test_mode=False,
test_duration=DEFAULT_TEST_MODE_DURATION,
ffmpeg_preset="medium",
grid_rows=1,
grid_cols=1,
box_style="censor",
):
"""Process a video to detect and visualize specified objects."""
try:
print(f"\nProcessing: {video_path}")
print(f"Looking for: {target_object}")
# Load model
print("Loading Moondream model...")
model, tokenizer = load_moondream()
# Get video properties
props = get_video_properties(video_path)
# Initialize scene detector with ContentDetector
scene_detector = ContentDetector(threshold=30.0) # Adjust threshold as needed
# Initialize DeepSORT tracker
tracker = DeepSORTTracker()
# If in test mode, only process first N seconds
if test_mode:
frame_count = min(int(props["fps"] * test_duration), props["frame_count"])
else:
frame_count = props["frame_count"]
ad_detections = {} # Store detection results by frame number
print("Extracting frames and detecting objects...")
video = cv2.VideoCapture(video_path)
# Detect scenes first
scenes = detect(video_path, scene_detector)
scene_changes = set(end.get_frames() for _, end in scenes)
print(f"Detected {len(scenes)} scenes")
frame_count_processed = 0
with tqdm(total=frame_count) as pbar:
while frame_count_processed < frame_count:
ret, frame = video.read()
if not ret:
break
# Check if current frame is a scene change
if frame_count_processed in scene_changes:
print(f"Scene change detected at frame {frame_count_processed}. Resetting tracker.")
tracker.reset()
# Detect objects in the frame
detected_objects = detect_objects_in_frame(
model, tokenizer, frame, target_object, grid_rows=grid_rows, grid_cols=grid_cols
)
# Update tracker with current detections
tracked_objects = tracker.update(frame, detected_objects)
# Store results for every frame, even if empty
ad_detections[frame_count_processed] = tracked_objects
frame_count_processed += 1
pbar.update(1)
video.release()
if frame_count_processed == 0:
print("No frames could be read from video")
return {}
# Apply filtering
filtered_ad_detections = filter_temporal_outliers(ad_detections)
# Build detection data structure
detection_data = {
"video_metadata": {
"file_name": os.path.basename(video_path),
"fps": props["fps"],
"width": props["width"],
"height": props["height"],
"total_frames": props["frame_count"],
"duration_sec": props["frame_count"] / props["fps"],
"detect_keyword": target_object,
"test_mode": test_mode,
"grid_size": f"{grid_rows}x{grid_cols}",
"box_style": box_style,
"timestamp": datetime.now().isoformat()
},
"frame_detections": [
{
"frame": frame_num,
"timestamp": frame_num / props["fps"],
"objects": [
{
"keyword": kw,
"bbox": list(box), # Convert numpy array to list if needed
"track_id": track_id if len(detection) == 3 else None
}
for detection in filtered_ad_detections.get(frame_num, [])
for box, kw, *track_id in [detection] # Unpack detection tuple, track_id will be empty list if not present
]
}
for frame_num in range(props["frame_count"] if not test_mode else min(int(props["fps"] * test_duration), props["frame_count"]))
]
}
# Save filtered data
outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs")
os.makedirs(outputs_dir, exist_ok=True)
base_name = os.path.splitext(os.path.basename(video_path))[0]
json_path = os.path.join(outputs_dir, f"{box_style}_{target_object}_{base_name}_detections.json")
from persistence import save_detection_data
if not save_detection_data(detection_data, json_path):
print("Warning: Failed to save detection data")
# Create video with filtered data
output_path = create_detection_video(
video_path,
filtered_ad_detections,
target_object,
model,
ffmpeg_preset=ffmpeg_preset,
test_mode=test_mode,
test_duration=test_duration,
box_style=box_style,
)
if output_path is None:
print("\nError: Failed to create output video")
return None
print(f"\nOutput saved to: {output_path}")
print(f"Detection data saved to: {json_path}")
return output_path
except Exception as e:
print(f"Error processing video: {str(e)}")
import traceback
traceback.print_exc()
return None
def main():
"""Process all videos in the inputs directory."""
parser = argparse.ArgumentParser(
description="Detect objects in videos using Moondream2"
)
parser.add_argument(
"--test", action="store_true", help="Process only first 3 seconds of each video"
)
parser.add_argument(
"--test-duration",
type=int,
default=DEFAULT_TEST_MODE_DURATION,
help=f"Number of seconds to process in test mode (default: {DEFAULT_TEST_MODE_DURATION})"
)
parser.add_argument(
"--preset",
choices=FFMPEG_PRESETS,
default="medium",
help="FFmpeg encoding preset (default: medium). Faster presets = lower quality",
)
parser.add_argument(
"--detect",
type=str,
default="face",
help='Object to detect in the video (default: face, use --detect "thing to detect" to override)',
)
parser.add_argument(
"--rows",
type=int,
default=1,
help="Number of rows to split each frame into (default: 1)",
)
parser.add_argument(
"--cols",
type=int,
default=1,
help="Number of columns to split each frame into (default: 1)",
)
parser.add_argument(
"--box-style",
choices=["censor", "bounding-box", "hitmarker", "sam", "sam-fast", "fuzzy-blur",
"pixelated-blur", "intense-pixelated-blur", "obfuscated-pixel"],
default="censor",
help="Style of detection visualization (default: censor)",
)
args = parser.parse_args()
input_dir = "inputs"
os.makedirs(input_dir, exist_ok=True)
os.makedirs("outputs", exist_ok=True)
video_files = [
f
for f in os.listdir(input_dir)
if f.lower().endswith((".mp4", ".avi", ".mov", ".mkv", ".webm"))
]
if not video_files:
print("No video files found in 'inputs' directory")
return
print(f"Found {len(video_files)} videos to process")
print(f"Will detect: {args.detect}")
if args.test:
print("Running in test mode - processing only first 3 seconds of each video")
print(f"Using FFmpeg preset: {args.preset}")
print(f"Grid size: {args.rows}x{args.cols}")
print(f"Box style: {args.box_style}")
success_count = 0
for video_file in video_files:
video_path = os.path.join(input_dir, video_file)
output_path = process_video(
video_path,
args.detect,
test_mode=args.test,
test_duration=args.test_duration,
ffmpeg_preset=args.preset,
grid_rows=args.rows,
grid_cols=args.cols,
box_style=args.box_style,
)
if output_path:
success_count += 1
print(
f"\nProcessing complete. Successfully processed {success_count} out of {len(video_files)} videos."
)
if __name__ == "__main__":
main()
|