File size: 45,009 Bytes
20c36d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
#!/usr/bin/env python3
import cv2, os, subprocess, argparse
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, SamModel, SamProcessor
from tqdm import tqdm
import numpy as np
from datetime import datetime
from deep_sort_integration import DeepSORTTracker
from scenedetect import detect, ContentDetector
from functools import lru_cache

# Constants
DEFAULT_TEST_MODE_DURATION = 3  # Process only first 3 seconds in test mode by default
FFMPEG_PRESETS = [
    "ultrafast",
    "superfast",
    "veryfast",
    "faster",
    "fast",
    "medium",
    "slow",
    "slower",
    "veryslow",
]
FONT = cv2.FONT_HERSHEY_SIMPLEX  # Font for bounding-box-style labels

# Detection parameters
IOU_THRESHOLD = 0.5  # IoU threshold for considering boxes related

# Hitmarker parameters
HITMARKER_SIZE = 20  # Size of the hitmarker in pixels
HITMARKER_GAP = 3  # Size of the empty space in the middle (reduced from 8)
HITMARKER_THICKNESS = 2  # Thickness of hitmarker lines
HITMARKER_COLOR = (255, 255, 255)  # White color for hitmarker
HITMARKER_SHADOW_COLOR = (80, 80, 80)  # Lighter gray for shadow effect
HITMARKER_SHADOW_OFFSET = 1  # Smaller shadow offset

# SAM parameters
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Initialize model variables as None
sam_model = None
sam_processor = None
slimsam_model = None
slimsam_processor = None

@lru_cache(maxsize=2)  # Cache both regular and slim SAM models
def get_sam_model(slim=False):
    """Get cached SAM model and processor."""
    global sam_model, sam_processor, slimsam_model, slimsam_processor
    
    if slim:
        if slimsam_model is None:
            print("Loading SlimSAM model for the first time...")
            slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to(device)
            slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
        return slimsam_model, slimsam_processor
    else:
        if sam_model is None:
            print("Loading SAM model for the first time...")
            sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
            sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
        return sam_model, sam_processor

def load_sam_model(slim=False):
    """Load SAM model and processor with caching."""
    return get_sam_model(slim=slim)

def generate_color_pair():
    """Generate a generic light blue and dark blue color pair for SAM visualization."""
    dark_rgb = [0, 0, 139]  # Dark blue
    light_rgb = [173, 216, 230]  # Light blue
    return dark_rgb, light_rgb

def create_mask_overlay(image, masks, points=None, labels=None):
    """Create a mask overlay with contours for multiple SAM visualizations.
    
    Args:
        image: PIL Image to overlay masks on
        masks: List of binary masks or single mask
        points: Optional list of (x,y) points for labels
        labels: Optional list of label strings for each point
    """
    # Convert single mask to list for uniform processing
    if not isinstance(masks, list):
        masks = [masks]
    
    # Create empty overlays
    overlay = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
    outline = np.zeros((*image.size[::-1], 4), dtype=np.uint8)
    
    # Process each mask
    for i, mask in enumerate(masks):
        # Convert binary mask to uint8
        mask_uint8 = (mask > 0).astype(np.uint8)
        
        # Dilation to fill gaps
        kernel = np.ones((5, 5), np.uint8)
        mask_dilated = cv2.dilate(mask_uint8, kernel, iterations=1)
        
        # Find contours of the dilated mask
        contours, _ = cv2.findContours(mask_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        # Generate random color pair for this segmentation
        dark_color, light_color = generate_color_pair()
        
        # Add to the overlays
        overlay[mask_dilated > 0] = [*light_color, 90]  # Light color with 35% opacity
        cv2.drawContours(outline, contours, -1, (*dark_color, 255), 2)  # Dark color outline
    
    # Convert to PIL images
    mask_overlay = Image.fromarray(overlay, 'RGBA')
    outline_overlay = Image.fromarray(outline, 'RGBA')
    
    # Composite the layers
    result = image.convert('RGBA')
    result.paste(mask_overlay, (0, 0), mask_overlay)
    result.paste(outline_overlay, (0, 0), outline_overlay)
    
    # Add labels if provided
    if points and labels:
        result_array = np.array(result)
        for (x, y), label in zip(points, labels):
            label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
            cv2.putText(
                result_array,
                label,
                (int(x - label_size[0] // 2), int(y - 20)),
                FONT,
                0.5,
                (255, 255, 255),
                1,
                cv2.LINE_AA,
            )
        result = Image.fromarray(result_array)
    
    return result

def process_sam_detection(image, center_x, center_y, slim=False):
    """Process a single detection point with SAM.
    
    Returns:
        tuple: (mask, result_pil) where mask is the binary mask and result_pil is the visualization
    """
    if not isinstance(image, Image.Image):
        image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    
    # Get appropriate model from cache
    model, processor = get_sam_model(slim)
    
    # Process the image with SAM
    inputs = processor(
        image,
        input_points=[[[center_x, center_y]]],
        return_tensors="pt"
    ).to(device)

    with torch.no_grad():
        outputs = model(**inputs)

    mask = processor.post_process_masks(
        outputs.pred_masks.cpu(),
        inputs["original_sizes"].cpu(),
        inputs["reshaped_input_sizes"].cpu()
    )[0][0][0].numpy()
    
    # Create the visualization
    result = create_mask_overlay(image, mask)
    return mask, result

def load_moondream():
    """Load Moondream model and tokenizer."""
    model = AutoModelForCausalLM.from_pretrained(
        "vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
    )
    tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
    return model, tokenizer


def get_video_properties(video_path):
    """Get basic video properties."""
    video = cv2.VideoCapture(video_path)
    fps = video.get(cv2.CAP_PROP_FPS)
    frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    video.release()
    return {"fps": fps, "frame_count": frame_count, "width": width, "height": height}


def is_valid_bounding_box(bounding_box):
    """Check if bounding box coordinates are reasonable."""
    x1, y1, x2, y2 = bounding_box
    width = x2 - x1
    height = y2 - y1

    # Reject boxes that are too large (over 90% of frame in both dimensions)
    if width > 0.9 and height > 0.9:
        return False

    # Reject boxes that are too small (less than 1% of frame)
    if width < 0.01 or height < 0.01:
        return False

    return True


def split_frame_into_grid(frame, grid_rows, grid_cols):
    """Split a frame into a grid of tiles."""
    height, width = frame.shape[:2]
    tile_height = height // grid_rows
    tile_width = width // grid_cols
    tiles = []
    tile_positions = []

    for i in range(grid_rows):
        for j in range(grid_cols):
            y1 = i * tile_height
            y2 = (i + 1) * tile_height if i < grid_rows - 1 else height
            x1 = j * tile_width
            x2 = (j + 1) * tile_width if j < grid_cols - 1 else width

            tile = frame[y1:y2, x1:x2]
            tiles.append(tile)
            tile_positions.append((x1, y1, x2, y2))

    return tiles, tile_positions


def convert_tile_coords_to_frame(box, tile_pos, frame_shape):
    """Convert coordinates from tile space to frame space."""
    frame_height, frame_width = frame_shape[:2]
    tile_x1, tile_y1, tile_x2, tile_y2 = tile_pos
    tile_width = tile_x2 - tile_x1
    tile_height = tile_y2 - tile_y1

    x1_tile_abs = box[0] * tile_width
    y1_tile_abs = box[1] * tile_height
    x2_tile_abs = box[2] * tile_width
    y2_tile_abs = box[3] * tile_height

    x1_frame_abs = tile_x1 + x1_tile_abs
    y1_frame_abs = tile_y1 + y1_tile_abs
    x2_frame_abs = tile_x1 + x2_tile_abs
    y2_frame_abs = tile_y1 + y2_tile_abs

    x1_norm = x1_frame_abs / frame_width
    y1_norm = y1_frame_abs / frame_height
    x2_norm = x2_frame_abs / frame_width
    y2_norm = y2_frame_abs / frame_height

    x1_norm = max(0.0, min(1.0, x1_norm))
    y1_norm = max(0.0, min(1.0, y1_norm))
    x2_norm = max(0.0, min(1.0, x2_norm))
    y2_norm = max(0.0, min(1.0, y2_norm))

    return [x1_norm, y1_norm, x2_norm, y2_norm]


def merge_tile_detections(tile_detections, iou_threshold=0.5):
    """Merge detections from different tiles using NMS-like approach."""
    if not tile_detections:
        return []

    all_boxes = []
    all_keywords = []

    # Collect all boxes and their keywords
    for detections in tile_detections:
        for box, keyword in detections:
            all_boxes.append(box)
            all_keywords.append(keyword)

    if not all_boxes:
        return []

    # Convert to numpy for easier processing
    boxes = np.array(all_boxes)

    # Calculate areas
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (x2 - x1) * (y2 - y1)

    # Sort boxes by area
    order = areas.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        if order.size == 1:
            break

        # Calculate IoU with rest of boxes
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h

        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        # Get indices of boxes with IoU less than threshold
        inds = np.where(ovr <= iou_threshold)[0]
        order = order[inds + 1]

    return [(all_boxes[i], all_keywords[i]) for i in keep]


def detect_objects_in_frame(model, tokenizer, image, target_object, grid_rows=1, grid_cols=1):
    """Detect specified objects in a frame using grid-based analysis."""
    if grid_rows == 1 and grid_cols == 1:
        return detect_objects_in_frame_single(model, tokenizer, image, target_object)

    # Convert numpy array to PIL Image if needed
    if not isinstance(image, Image.Image):
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # Split frame into tiles
    tiles, tile_positions = split_frame_into_grid(image, grid_rows, grid_cols)

    # Process each tile
    tile_detections = []
    for tile, tile_pos in zip(tiles, tile_positions):
        # Convert tile to PIL Image
        tile_pil = Image.fromarray(tile)

        # Detect objects in tile
        response = model.detect(tile_pil, target_object)

        if response and "objects" in response and response["objects"]:
            objects = response["objects"]
            tile_objects = []

            for obj in objects:
                if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
                    box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]

                    if is_valid_bounding_box(box):
                        # Convert tile coordinates to frame coordinates
                        frame_box = convert_tile_coords_to_frame(
                            box, tile_pos, image.shape
                        )
                        tile_objects.append((frame_box, target_object))

            if tile_objects:  # Only append if we found valid objects
                tile_detections.append(tile_objects)

    # Merge detections from all tiles
    merged_detections = merge_tile_detections(tile_detections)
    return merged_detections


def detect_objects_in_frame_single(model, tokenizer, image, target_object):
    """Single-frame detection function."""
    detected_objects = []

    # Convert numpy array to PIL Image if needed
    if not isinstance(image, Image.Image):
        image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

    # Detect objects
    response = model.detect(image, target_object)

    # Check if we have valid objects
    if response and "objects" in response and response["objects"]:
        objects = response["objects"]

        for obj in objects:
            if all(k in obj for k in ["x_min", "y_min", "x_max", "y_max"]):
                box = [obj["x_min"], obj["y_min"], obj["x_max"], obj["y_max"]]
                # If box is valid (not full-frame), add it
                if is_valid_bounding_box(box):
                    detected_objects.append((box, target_object))

    return detected_objects


def draw_hitmarker(
    frame, center_x, center_y, size=HITMARKER_SIZE, color=HITMARKER_COLOR, shadow=True
):
    """Draw a COD-style hitmarker cross with more space in the middle."""
    half_size = size // 2

    # Draw shadow first if enabled
    if shadow:
        # Top-left to center shadow
        cv2.line(
            frame,
            (
                center_x - half_size + HITMARKER_SHADOW_OFFSET,
                center_y - half_size + HITMARKER_SHADOW_OFFSET,
            ),
            (
                center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
                center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
            ),
            HITMARKER_SHADOW_COLOR,
            HITMARKER_THICKNESS,
        )
        # Top-right to center shadow
        cv2.line(
            frame,
            (
                center_x + half_size + HITMARKER_SHADOW_OFFSET,
                center_y - half_size + HITMARKER_SHADOW_OFFSET,
            ),
            (
                center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
                center_y - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
            ),
            HITMARKER_SHADOW_COLOR,
            HITMARKER_THICKNESS,
        )
        # Bottom-left to center shadow
        cv2.line(
            frame,
            (
                center_x - half_size + HITMARKER_SHADOW_OFFSET,
                center_y + half_size + HITMARKER_SHADOW_OFFSET,
            ),
            (
                center_x - HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
                center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
            ),
            HITMARKER_SHADOW_COLOR,
            HITMARKER_THICKNESS,
        )
        # Bottom-right to center shadow
        cv2.line(
            frame,
            (
                center_x + half_size + HITMARKER_SHADOW_OFFSET,
                center_y + half_size + HITMARKER_SHADOW_OFFSET,
            ),
            (
                center_x + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
                center_y + HITMARKER_GAP + HITMARKER_SHADOW_OFFSET,
            ),
            HITMARKER_SHADOW_COLOR,
            HITMARKER_THICKNESS,
        )

    # Draw main hitmarker
    # Top-left to center
    cv2.line(
        frame,
        (center_x - half_size, center_y - half_size),
        (center_x - HITMARKER_GAP, center_y - HITMARKER_GAP),
        color,
        HITMARKER_THICKNESS,
    )
    # Top-right to center
    cv2.line(
        frame,
        (center_x + half_size, center_y - half_size),
        (center_x + HITMARKER_GAP, center_y - HITMARKER_GAP),
        color,
        HITMARKER_THICKNESS,
    )
    # Bottom-left to center
    cv2.line(
        frame,
        (center_x - half_size, center_y + half_size),
        (center_x - HITMARKER_GAP, center_y + HITMARKER_GAP),
        color,
        HITMARKER_THICKNESS,
    )
    # Bottom-right to center
    cv2.line(
        frame,
        (center_x + half_size, center_y + half_size),
        (center_x + HITMARKER_GAP, center_y + HITMARKER_GAP),
        color,
        HITMARKER_THICKNESS,
    )


def draw_ad_boxes(frame, detected_objects, detect_keyword, model, box_style="censor"):
    height, width = frame.shape[:2]

    points = []
    # Only get points if we need them for hitmarker or SAM styles
    if box_style in ["hitmarker", "sam", "sam-fast"]:
        frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        try:
            point_response = model.point(frame_pil, detect_keyword)
            
            if isinstance(point_response, dict) and 'points' in point_response:
                points = point_response['points']
        except Exception as e:
            print(f"Error during point detection: {str(e)}")
            points = []

    # Only load SAM models and process points if we're using SAM styles and have points
    if box_style in ["sam", "sam-fast"] and points:
        # Start with the original PIL image
        frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        
        # Collect all masks and points
        all_masks = []
        point_coords = []
        point_labels = []
        
        for point in points:
            try:
                center_x = int(float(point["x"]) * width)
                center_y = int(float(point["y"]) * height)

                # Get mask and visualization
                mask, _ = process_sam_detection(frame_pil, center_x, center_y, slim=(box_style == "sam-fast"))
                
                # Collect mask and point data
                all_masks.append(mask)
                point_coords.append((center_x, center_y))
                point_labels.append(detect_keyword)
                
            except Exception as e:
                print(f"Error processing individual SAM point: {str(e)}")
                print(f"Point data: {point}")
        
        if all_masks:
            # Create final visualization with all masks
            result_pil = create_mask_overlay(frame_pil, all_masks, point_coords, point_labels)
            frame = cv2.cvtColor(np.array(result_pil), cv2.COLOR_RGB2BGR)

    # Process other visualization styles
    for detection in detected_objects:
        try:
            # Handle both tracked and untracked detections
            if len(detection) == 3:  # Tracked detection with ID
                box, keyword, track_id = detection
            else:  # Regular detection without tracking
                box, keyword = detection
                track_id = None

            x1 = int(box[0] * width)
            y1 = int(box[1] * height)
            x2 = int(box[2] * width)
            y2 = int(box[3] * height)

            x1 = max(0, min(x1, width - 1))
            y1 = max(0, min(y1, height - 1))
            x2 = max(0, min(x2, width - 1))
            y2 = max(0, min(y2, height - 1))

            if x2 > x1 and y2 > y1:
                if box_style == "censor":
                    cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 0), -1)
                elif box_style == "bounding-box":
                    cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)

                    label = f"{detect_keyword}" if track_id is not None else detect_keyword
                    label_size = cv2.getTextSize(label, FONT, 0.7, 2)[0]
                    cv2.rectangle(
                        frame, (x1, y1 - 25), (x1 + label_size[0], y1), (0, 0, 255), -1
                    )
                    cv2.putText(
                        frame,
                        label,
                        (x1, y1 - 6),
                        FONT,
                        0.7,
                        (255, 255, 255),
                        2,
                        cv2.LINE_AA,
                    )
                elif box_style == "fuzzy-blur":
                    # Extract ROI
                    roi = frame[y1:y2, x1:x2]
                    # Apply Gaussian blur with much larger kernel for intense blur
                    blurred_roi = cv2.GaussianBlur(roi, (125, 125), 0)
                    # Replace original ROI with blurred version
                    frame[y1:y2, x1:x2] = blurred_roi
                elif box_style == "pixelated-blur":
                    # Extract ROI
                    roi = frame[y1:y2, x1:x2]
                    # Pixelate by resizing down and up
                    h, w = roi.shape[:2]
                    temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
                    pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
                    # Mix up the pixelated frame slightly by adding random noise
                    noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
                    pixelated = cv2.add(pixelated, noise)
                    # Apply stronger Gaussian blur to smooth edges
                    blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
                    # Replace original ROI
                    frame[y1:y2, x1:x2] = blurred_pixelated
                elif box_style == "obfuscated-pixel":
                    # Calculate expansion amount based on 10% of object dimensions
                    box_width = x2 - x1
                    box_height = y2 - y1
                    expand_x = int(box_width * 0.10)
                    expand_y = int(box_height * 0.10)
                    
                    # Expand the bounding box by 10% in all directions
                    x1_expanded = max(0, x1 - expand_x)
                    y1_expanded = max(0, y1 - expand_y)
                    x2_expanded = min(width - 1, x2 + expand_x)
                    y2_expanded = min(height - 1, y2 + expand_y)
                    
                    # Extract ROI with much larger padding for true background sampling
                    padding = 100  # Much larger padding to get true background
                    y1_pad = max(0, y1_expanded - padding)
                    y2_pad = min(height, y2_expanded + padding)
                    x1_pad = max(0, x1_expanded - padding)
                    x2_pad = min(width, x2_expanded + padding)
                    
                    # Get the padded region including background
                    padded_roi = frame[y1_pad:y2_pad, x1_pad:x2_pad]
                    
                    # Create mask that excludes a larger region around the detection
                    h, w = y2_expanded - y1_expanded, x2_expanded - x1_expanded
                    bg_mask = np.ones(padded_roi.shape[:2], dtype=bool)
                    
                    # Exclude a larger region around the detection from background sampling
                    exclusion_padding = 50  # Area to exclude around detection
                    exclude_y1 = padding - exclusion_padding
                    exclude_y2 = padding + h + exclusion_padding
                    exclude_x1 = padding - exclusion_padding
                    exclude_x2 = padding + w + exclusion_padding
                    
                    # Make sure exclusion coordinates are valid
                    exclude_y1 = max(0, exclude_y1)
                    exclude_y2 = min(padded_roi.shape[0], exclude_y2)
                    exclude_x1 = max(0, exclude_x1)
                    exclude_x2 = min(padded_roi.shape[1], exclude_x2)
                    
                    # Mark the exclusion zone in the mask
                    bg_mask[exclude_y1:exclude_y2, exclude_x1:exclude_x2] = False
                    
                    # If we have enough background pixels, calculate average color
                    if np.any(bg_mask):
                        bg_color = np.mean(padded_roi[bg_mask], axis=0).astype(np.uint8)
                    else:
                        # Fallback to edges if we couldn't get enough background
                        edge_samples = np.concatenate([
                            padded_roi[0],  # Top edge
                            padded_roi[-1],  # Bottom edge
                            padded_roi[:, 0],  # Left edge
                            padded_roi[:, -1]  # Right edge
                        ])
                        bg_color = np.mean(edge_samples, axis=0).astype(np.uint8)
                    
                    # Create base pixelated version (of the expanded region)
                    temp = cv2.resize(frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded], 
                                   (6, 6), interpolation=cv2.INTER_LINEAR)
                    pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
                    
                    # Blend heavily towards background color
                    blend_factor = 0.9  # Much stronger blend with background
                    blended = cv2.addWeighted(
                        pixelated, 1 - blend_factor,
                        np.full((h, w, 3), bg_color, dtype=np.uint8), blend_factor,
                        0
                    )
                    
                    # Replace original ROI with blended version (using expanded coordinates)
                    frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blended
                elif box_style == "intense-pixelated-blur":
                    # Expand the bounding box by pixels in all directions
                    x1_expanded = max(0, x1 - 15)
                    y1_expanded = max(0, y1 - 15)
                    x2_expanded = min(width - 1, x2 + 25)
                    y2_expanded = min(height - 1, y2 + 25)

                    # Extract ROI
                    roi = frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded]
                    # Pixelate by resizing down and up
                    h, w = roi.shape[:2]
                    temp = cv2.resize(roi, (10, 10), interpolation=cv2.INTER_LINEAR)
                    pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
                    # Mix up the pixelated frame slightly by adding random noise
                    noise = np.random.randint(0, 50, (h, w, 3), dtype=np.uint8)
                    pixelated = cv2.add(pixelated, noise)
                    # Apply stronger Gaussian blur to smooth edges
                    blurred_pixelated = cv2.GaussianBlur(pixelated, (15, 15), 0)
                    # Replace original ROI
                    frame[y1_expanded:y2_expanded, x1_expanded:x2_expanded] = blurred_pixelated
                elif box_style == "hitmarker":
                    if points:
                        for point in points:
                            try:
                                print(f"Processing point: {point}")
                                center_x = int(float(point["x"]) * width)
                                center_y = int(float(point["y"]) * height)
                                print(f"Converted coordinates: ({center_x}, {center_y})")

                                draw_hitmarker(frame, center_x, center_y)

                                label = f"{detect_keyword}" if track_id is not None else detect_keyword
                                label_size = cv2.getTextSize(label, FONT, 0.5, 1)[0]
                                cv2.putText(
                                    frame,
                                    label,
                                    (center_x - label_size[0] // 2, center_y - HITMARKER_SIZE - 5),
                                    FONT,
                                    0.5,
                                    HITMARKER_COLOR,
                                    1,
                                    cv2.LINE_AA,
                                )
                            except Exception as e:
                                print(f"Error processing individual point: {str(e)}")
                                print(f"Point data: {point}")

        except Exception as e:
            print(f"Error drawing {box_style} style box: {str(e)}")
            print(f"Box data: {box}")
            print(f"Keyword: {keyword}")

    return frame


def filter_temporal_outliers(detections_dict):
    """Filter out extremely large detections that take up most of the frame.
    Only keeps detections that are reasonable in size.

    Args:
        detections_dict: Dictionary of {frame_number: [(box, keyword, track_id), ...]}
    """
    filtered_detections = {}

    for t, detections in detections_dict.items():
        # Only keep detections that aren't too large
        valid_detections = []
        for detection in detections:
            # Handle both tracked and untracked detections
            if len(detection) == 3:  # Tracked detection with ID
                box, keyword, track_id = detection
            else:  # Regular detection without tracking
                box, keyword = detection
                track_id = None

            # Calculate box size as percentage of frame
            width = box[2] - box[0]
            height = box[3] - box[1]
            area = width * height

            # If box is less than 90% of frame, keep it
            if area < 0.9:
                if track_id is not None:
                    valid_detections.append((box, keyword, track_id))
                else:
                    valid_detections.append((box, keyword))

        if valid_detections:
            filtered_detections[t] = valid_detections

    return filtered_detections


def describe_frames(video_path, model, tokenizer, detect_keyword, test_mode=False, test_duration=DEFAULT_TEST_MODE_DURATION, grid_rows=1, grid_cols=1):
    """Extract and detect objects in frames."""
    props = get_video_properties(video_path)
    fps = props["fps"]

    # Initialize DeepSORT tracker
    tracker = DeepSORTTracker()

    # If in test mode, only process first N seconds
    if test_mode:
        frame_count = min(int(fps * test_duration), props["frame_count"])
    else:
        frame_count = props["frame_count"]

    ad_detections = {}  # Store detection results by frame number

    print("Extracting frames and detecting objects...")
    video = cv2.VideoCapture(video_path)

    # Detect scenes first
    scenes = detect(video_path, scene_detector)
    scene_changes = set(end.get_frames() for _, end in scenes)
    print(f"Detected {len(scenes)} scenes")

    frame_count_processed = 0
    with tqdm(total=frame_count) as pbar:
        while frame_count_processed < frame_count:
            ret, frame = video.read()
            if not ret:
                break

            # Check if current frame is a scene change
            if frame_count_processed in scene_changes:
                # Detect objects in the frame
                detected_objects = detect_objects_in_frame(
                    model, tokenizer, frame, detect_keyword, grid_rows=grid_rows, grid_cols=grid_cols
                )

            # Update tracker with current detections
            tracked_objects = tracker.update(frame, detected_objects)

            # Store results for every frame, even if empty
            ad_detections[frame_count_processed] = tracked_objects

            frame_count_processed += 1
            pbar.update(1)

    video.release()

    if frame_count_processed == 0:
        print("No frames could be read from video")
        return {}

    return ad_detections


def create_detection_video(
    video_path,
    ad_detections,
    detect_keyword,
    model,
    output_path=None,
    ffmpeg_preset="medium",
    test_mode=False,
    test_duration=DEFAULT_TEST_MODE_DURATION,
    box_style="censor",
):
    """Create video with detection boxes while preserving audio."""
    if output_path is None:
        # Create outputs directory if it doesn't exist
        outputs_dir = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "outputs"
        )
        os.makedirs(outputs_dir, exist_ok=True)

        # Clean the detect_keyword for filename
        safe_keyword = "".join(
            x for x in detect_keyword if x.isalnum() or x in (" ", "_", "-")
        )
        safe_keyword = safe_keyword.replace(" ", "_")

        # Create output filename
        base_name = os.path.splitext(os.path.basename(video_path))[0]
        output_path = os.path.join(
            outputs_dir, f"{box_style}_{safe_keyword}_{base_name}.mp4"
        )

    print(f"Will save output to: {output_path}")

    props = get_video_properties(video_path)
    fps, width, height = props["fps"], props["width"], props["height"]

    # If in test mode, only process first few seconds
    if test_mode:
        frame_count = min(int(fps * test_duration), props["frame_count"])
        print(f"Test mode enabled: Processing first {test_duration} seconds ({frame_count} frames)")
    else:
        frame_count = props["frame_count"]
        print("Full video mode: Processing entire video")

    video = cv2.VideoCapture(video_path)

    # Create temp output path by adding _temp before the extension
    base, ext = os.path.splitext(output_path)
    temp_output = f"{base}_temp{ext}"
    temp_audio = f"{base}_audio.aac"  # Temporary audio file

    out = cv2.VideoWriter(
        temp_output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
    )

    print("Creating detection video...")
    frame_count_processed = 0

    with tqdm(total=frame_count) as pbar:
        while frame_count_processed < frame_count:
            ret, frame = video.read()
            if not ret:
                break

            # Get detections for this exact frame
            if frame_count_processed in ad_detections:
                current_detections = ad_detections[frame_count_processed]
                if current_detections:
                    frame = draw_ad_boxes(
                        frame, current_detections, detect_keyword, model, box_style=box_style
                    )

            out.write(frame)
            frame_count_processed += 1
            pbar.update(1)

    video.release()
    out.release()

    # Extract audio from original video
    try:
        if test_mode:
            # In test mode, extract only the required duration of audio
            subprocess.run(
                [
                    "ffmpeg",
                    "-y",
                    "-i",
                    video_path,
                    "-t",
                    str(test_duration),
                    "-vn",  # No video
                    "-acodec",
                    "copy",
                    temp_audio,
                ],
                check=True,
            )
        else:
            subprocess.run(
                [
                    "ffmpeg",
                    "-y",
                    "-i",
                    video_path,
                    "-vn",  # No video
                    "-acodec",
                    "copy",
                    temp_audio,
                ],
                check=True,
            )
    except subprocess.CalledProcessError as e:
        print(f"Error extracting audio: {str(e)}")
        if os.path.exists(temp_output):
            os.remove(temp_output)
        return None

    # Merge processed video with original audio
    try:
        # Base FFmpeg command
        ffmpeg_cmd = [
            "ffmpeg",
            "-y",
            "-i",
            temp_output,
            "-i",
            temp_audio,
            "-c:v",
            "libx264",
            "-preset",
            ffmpeg_preset,
            "-crf",
            "23",
            "-c:a",
            "aac",
            "-b:a",
            "192k",
            "-movflags",
            "+faststart",  # Better web playback
        ]

        if test_mode:
            # In test mode, ensure output duration matches test_duration
            ffmpeg_cmd.extend([
                "-t",
                str(test_duration),
                "-shortest"  # Ensure output duration matches shortest input
            ])

        ffmpeg_cmd.extend([
            "-loglevel",
            "error",
            output_path
        ])

        subprocess.run(ffmpeg_cmd, check=True)

        # Clean up temporary files
        os.remove(temp_output)
        os.remove(temp_audio)

        if not os.path.exists(output_path):
            print(
                f"Warning: FFmpeg completed but output file not found at {output_path}"
            )
            return None

        return output_path

    except subprocess.CalledProcessError as e:
        print(f"Error merging audio with video: {str(e)}")
        if os.path.exists(temp_output):
            os.remove(temp_output)
        if os.path.exists(temp_audio):
            os.remove(temp_audio)
        return None


def process_video(
    video_path,
    target_object,
    test_mode=False,
    test_duration=DEFAULT_TEST_MODE_DURATION,
    ffmpeg_preset="medium",
    grid_rows=1,
    grid_cols=1,
    box_style="censor",
):
    """Process a video to detect and visualize specified objects."""
    try:
        print(f"\nProcessing: {video_path}")
        print(f"Looking for: {target_object}")

        # Load model
        print("Loading Moondream model...")
        model, tokenizer = load_moondream()

        # Get video properties
        props = get_video_properties(video_path)
        
        # Initialize scene detector with ContentDetector
        scene_detector = ContentDetector(threshold=30.0)  # Adjust threshold as needed
        
        # Initialize DeepSORT tracker
        tracker = DeepSORTTracker()

        # If in test mode, only process first N seconds
        if test_mode:
            frame_count = min(int(props["fps"] * test_duration), props["frame_count"])
        else:
            frame_count = props["frame_count"]

        ad_detections = {}  # Store detection results by frame number

        print("Extracting frames and detecting objects...")
        video = cv2.VideoCapture(video_path)

        # Detect scenes first
        scenes = detect(video_path, scene_detector)
        scene_changes = set(end.get_frames() for _, end in scenes)
        print(f"Detected {len(scenes)} scenes")

        frame_count_processed = 0
        with tqdm(total=frame_count) as pbar:
            while frame_count_processed < frame_count:
                ret, frame = video.read()
                if not ret:
                    break

                # Check if current frame is a scene change
                if frame_count_processed in scene_changes:
                    print(f"Scene change detected at frame {frame_count_processed}. Resetting tracker.")
                    tracker.reset()

                # Detect objects in the frame
                detected_objects = detect_objects_in_frame(
                    model, tokenizer, frame, target_object, grid_rows=grid_rows, grid_cols=grid_cols
                )

                # Update tracker with current detections
                tracked_objects = tracker.update(frame, detected_objects)

                # Store results for every frame, even if empty
                ad_detections[frame_count_processed] = tracked_objects

                frame_count_processed += 1
                pbar.update(1)

        video.release()

        if frame_count_processed == 0:
            print("No frames could be read from video")
            return {}

        # Apply filtering
        filtered_ad_detections = filter_temporal_outliers(ad_detections)
        
        # Build detection data structure
        detection_data = {
            "video_metadata": {
                "file_name": os.path.basename(video_path),
                "fps": props["fps"],
                "width": props["width"],
                "height": props["height"],
                "total_frames": props["frame_count"],
                "duration_sec": props["frame_count"] / props["fps"],
                "detect_keyword": target_object,
                "test_mode": test_mode,
                "grid_size": f"{grid_rows}x{grid_cols}",
                "box_style": box_style,
                "timestamp": datetime.now().isoformat()
            },
            "frame_detections": [
                {
                    "frame": frame_num,
                    "timestamp": frame_num / props["fps"],
                    "objects": [
                        {
                            "keyword": kw,
                            "bbox": list(box),  # Convert numpy array to list if needed
                            "track_id": track_id if len(detection) == 3 else None
                        }
                        for detection in filtered_ad_detections.get(frame_num, [])
                        for box, kw, *track_id in [detection]  # Unpack detection tuple, track_id will be empty list if not present
                    ]
                }
                for frame_num in range(props["frame_count"] if not test_mode else min(int(props["fps"] * test_duration), props["frame_count"]))
            ]
        }
        
        # Save filtered data
        outputs_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "outputs")
        os.makedirs(outputs_dir, exist_ok=True)
        base_name = os.path.splitext(os.path.basename(video_path))[0]
        json_path = os.path.join(outputs_dir, f"{box_style}_{target_object}_{base_name}_detections.json")
        
        from persistence import save_detection_data
        if not save_detection_data(detection_data, json_path):
            print("Warning: Failed to save detection data")

        # Create video with filtered data
        output_path = create_detection_video(
            video_path,
            filtered_ad_detections,
            target_object,
            model,
            ffmpeg_preset=ffmpeg_preset,
            test_mode=test_mode,
            test_duration=test_duration,
            box_style=box_style,
        )

        if output_path is None:
            print("\nError: Failed to create output video")
            return None

        print(f"\nOutput saved to: {output_path}")
        print(f"Detection data saved to: {json_path}")
        return output_path
        
    except Exception as e:
        print(f"Error processing video: {str(e)}")
        import traceback
        traceback.print_exc()
        return None


def main():
    """Process all videos in the inputs directory."""
    parser = argparse.ArgumentParser(
        description="Detect objects in videos using Moondream2"
    )
    parser.add_argument(
        "--test", action="store_true", help="Process only first 3 seconds of each video"
    )
    parser.add_argument(
        "--test-duration",
        type=int,
        default=DEFAULT_TEST_MODE_DURATION,
        help=f"Number of seconds to process in test mode (default: {DEFAULT_TEST_MODE_DURATION})"
    )
    parser.add_argument(
        "--preset",
        choices=FFMPEG_PRESETS,
        default="medium",
        help="FFmpeg encoding preset (default: medium). Faster presets = lower quality",
    )
    parser.add_argument(
        "--detect",
        type=str,
        default="face",
        help='Object to detect in the video (default: face, use --detect "thing to detect" to override)',
    )
    parser.add_argument(
        "--rows",
        type=int,
        default=1,
        help="Number of rows to split each frame into (default: 1)",
    )
    parser.add_argument(
        "--cols",
        type=int,
        default=1,
        help="Number of columns to split each frame into (default: 1)",
    )
    parser.add_argument(
        "--box-style",
        choices=["censor", "bounding-box", "hitmarker", "sam", "sam-fast", "fuzzy-blur", 
                "pixelated-blur", "intense-pixelated-blur", "obfuscated-pixel"],
        default="censor",
        help="Style of detection visualization (default: censor)",
    )
    args = parser.parse_args()

    input_dir = "inputs"
    os.makedirs(input_dir, exist_ok=True)
    os.makedirs("outputs", exist_ok=True)

    video_files = [
        f
        for f in os.listdir(input_dir)
        if f.lower().endswith((".mp4", ".avi", ".mov", ".mkv", ".webm"))
    ]

    if not video_files:
        print("No video files found in 'inputs' directory")
        return

    print(f"Found {len(video_files)} videos to process")
    print(f"Will detect: {args.detect}")
    if args.test:
        print("Running in test mode - processing only first 3 seconds of each video")
    print(f"Using FFmpeg preset: {args.preset}")
    print(f"Grid size: {args.rows}x{args.cols}")
    print(f"Box style: {args.box_style}")

    success_count = 0
    for video_file in video_files:
        video_path = os.path.join(input_dir, video_file)
        output_path = process_video(
            video_path,
            args.detect,
            test_mode=args.test,
            test_duration=args.test_duration,
            ffmpeg_preset=args.preset,
            grid_rows=args.rows,
            grid_cols=args.cols,
            box_style=args.box_style,
        )
        if output_path:
            success_count += 1

    print(
        f"\nProcessing complete. Successfully processed {success_count} out of {len(video_files)} videos."
    )


if __name__ == "__main__":
    main()