Spaces:
Runtime error
Runtime error
File size: 23,461 Bytes
20c36d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
#!/usr/bin/env python3
# import spaces first
import spaces
import gradio as gr
import os
from main import load_moondream, process_video, load_sam_model
import shutil
import torch
from visualization import visualize_detections
from persistence import load_detection_data
import matplotlib.pyplot as plt
import io
from PIL import Image
import pandas as pd
from video_visualization import create_video_visualization
# Get absolute path to workspace root
WORKSPACE_ROOT = os.path.dirname(os.path.abspath(__file__))
# Check CUDA availability
print(f"Is CUDA available: {torch.cuda.is_available()}")
# We want to get True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# GPU Name
# Initialize Moondream model globally for reuse (will be loaded on first use)
model, tokenizer = None, None
# Uncomment for Hugging Face Spaces
@spaces.GPU(duration=120)
def process_video_file(
video_file, target_object, box_style, ffmpeg_preset, grid_rows, grid_cols, test_mode, test_duration
):
"""Process a video file through the Gradio interface."""
try:
if not video_file:
raise gr.Error("Please upload a video file")
# Load models if not already loaded
global model, tokenizer
if model is None or tokenizer is None:
model, tokenizer = load_moondream()
# Ensure input/output directories exist using absolute paths
inputs_dir = os.path.join(WORKSPACE_ROOT, "inputs")
outputs_dir = os.path.join(WORKSPACE_ROOT, "outputs")
os.makedirs(inputs_dir, exist_ok=True)
os.makedirs(outputs_dir, exist_ok=True)
# Copy uploaded video to inputs directory
video_filename = f"input_{os.path.basename(video_file)}"
input_video_path = os.path.join(inputs_dir, video_filename)
shutil.copy2(video_file, input_video_path)
try:
# Process the video
output_path = process_video(
input_video_path,
target_object,
test_mode=test_mode,
test_duration=test_duration,
ffmpeg_preset=ffmpeg_preset,
grid_rows=grid_rows,
grid_cols=grid_cols,
box_style=box_style,
)
# Get the corresponding JSON path
base_name = os.path.splitext(os.path.basename(video_filename))[0]
json_path = os.path.join(outputs_dir, f"{box_style}_{target_object}_{base_name}_detections.json")
# Verify output exists and is readable
if not output_path or not os.path.exists(output_path):
print(f"Warning: Output path {output_path} does not exist")
# Try to find the output based on expected naming convention
expected_output = os.path.join(
outputs_dir, f"{box_style}_{target_object}_{video_filename}"
)
if os.path.exists(expected_output):
output_path = expected_output
else:
# Try searching in outputs directory for any matching file
matching_files = [
f
for f in os.listdir(outputs_dir)
if f.startswith(f"{box_style}_{target_object}_")
]
if matching_files:
output_path = os.path.join(outputs_dir, matching_files[0])
else:
raise gr.Error("Failed to locate output video")
# Convert output path to absolute path if it isn't already
if not os.path.isabs(output_path):
output_path = os.path.join(WORKSPACE_ROOT, output_path)
print(f"Returning output path: {output_path}")
return output_path, json_path
finally:
# Clean up input file
try:
if os.path.exists(input_video_path):
os.remove(input_video_path)
except:
pass
except Exception as e:
print(f"Error in process_video_file: {str(e)}")
raise gr.Error(f"Error processing video: {str(e)}")
def create_visualization_plots(json_path):
"""Create visualization plots and return them as images."""
try:
# Load the data
data = load_detection_data(json_path)
if not data:
return None, None, None, None, None, None, None, None, "No data found"
# Convert to DataFrame
rows = []
for frame_data in data["frame_detections"]:
frame = frame_data["frame"]
timestamp = frame_data["timestamp"]
for obj in frame_data["objects"]:
rows.append({
"frame": frame,
"timestamp": timestamp,
"keyword": obj["keyword"],
"x1": obj["bbox"][0],
"y1": obj["bbox"][1],
"x2": obj["bbox"][2],
"y2": obj["bbox"][3],
"area": (obj["bbox"][2] - obj["bbox"][0]) * (obj["bbox"][3] - obj["bbox"][1]),
"center_x": (obj["bbox"][0] + obj["bbox"][2]) / 2,
"center_y": (obj["bbox"][1] + obj["bbox"][3]) / 2
})
if not rows:
return None, None, None, None, None, None, None, None, "No detections found in the data"
df = pd.DataFrame(rows)
plots = []
# Create each plot and convert to image
for plot_num in range(8): # Increased to 8 plots
plt.figure(figsize=(8, 6))
if plot_num == 0:
# Plot 1: Number of detections per frame (Original)
detections_per_frame = df.groupby("frame").size()
plt.plot(detections_per_frame.index, detections_per_frame.values)
plt.xlabel("Frame")
plt.ylabel("Number of Detections")
plt.title("Detections Per Frame")
elif plot_num == 1:
# Plot 2: Distribution of detection areas (Original)
df["area"].hist(bins=30)
plt.xlabel("Detection Area (normalized)")
plt.ylabel("Count")
plt.title("Distribution of Detection Areas")
elif plot_num == 2:
# Plot 3: Average detection area over time (Original)
avg_area = df.groupby("frame")["area"].mean()
plt.plot(avg_area.index, avg_area.values)
plt.xlabel("Frame")
plt.ylabel("Average Detection Area")
plt.title("Average Detection Area Over Time")
elif plot_num == 3:
# Plot 4: Heatmap of detection centers (Original)
plt.hist2d(df["center_x"], df["center_y"], bins=30)
plt.colorbar()
plt.xlabel("X Position")
plt.ylabel("Y Position")
plt.title("Detection Center Heatmap")
elif plot_num == 4:
# Plot 5: Time-based Detection Density
# Shows when in the video most detections occur
df["time_bucket"] = pd.qcut(df["timestamp"], q=20, labels=False)
time_density = df.groupby("time_bucket").size()
plt.bar(time_density.index, time_density.values)
plt.xlabel("Video Timeline (20 segments)")
plt.ylabel("Number of Detections")
plt.title("Detection Density Over Video Duration")
elif plot_num == 5:
# Plot 6: Screen Region Analysis
# Divide screen into 3x3 grid and show detection counts
try:
df["grid_x"] = pd.qcut(df["center_x"], q=3, labels=["Left", "Center", "Right"], duplicates='drop')
df["grid_y"] = pd.qcut(df["center_y"], q=3, labels=["Top", "Middle", "Bottom"], duplicates='drop')
region_counts = df.groupby(["grid_y", "grid_x"]).size().unstack(fill_value=0)
plt.imshow(region_counts, cmap="YlOrRd")
plt.colorbar(label="Detection Count")
for i in range(3):
for j in range(3):
plt.text(j, i, region_counts.iloc[i, j], ha="center", va="center")
plt.xticks(range(3), ["Left", "Center", "Right"])
plt.yticks(range(3), ["Top", "Middle", "Bottom"])
plt.title("Screen Region Analysis")
except Exception as e:
plt.text(0.5, 0.5, "Insufficient variation in detection positions",
ha='center', va='center')
plt.title("Screen Region Analysis (Not Available)")
elif plot_num == 6:
# Plot 7: Detection Size Categories
# Categorize detections by size for content moderation
try:
size_labels = [
"Small (likely far/background)",
"Medium-small",
"Medium-large",
"Large (likely foreground/close)"
]
# Handle cases with limited unique values
unique_areas = df["area"].nunique()
if unique_areas >= 4:
df["size_category"] = pd.qcut(df["area"], q=4, labels=size_labels, duplicates='drop')
else:
# Alternative binning for limited unique values
df["size_category"] = pd.cut(df["area"],
bins=unique_areas,
labels=size_labels[:unique_areas])
size_dist = df["size_category"].value_counts()
plt.pie(size_dist.values, labels=size_dist.index, autopct="%1.1f%%")
plt.title("Detection Size Distribution")
except Exception as e:
plt.text(0.5, 0.5, "Insufficient variation in detection sizes",
ha='center', va='center')
plt.title("Detection Size Distribution (Not Available)")
elif plot_num == 7:
# Plot 8: Temporal Pattern Analysis
# Show patterns of when detections occur in sequence
try:
detection_gaps = df.sort_values("frame")["frame"].diff()
if len(detection_gaps.dropna().unique()) > 1:
plt.hist(detection_gaps.dropna(), bins=min(30, len(detection_gaps.dropna().unique())),
edgecolor="black")
plt.xlabel("Frames Between Detections")
plt.ylabel("Frequency")
plt.title("Detection Temporal Pattern Analysis")
else:
plt.text(0.5, 0.5, "Uniform detection intervals", ha='center', va='center')
plt.title("Temporal Pattern Analysis (Uniform)")
except Exception as e:
plt.text(0.5, 0.5, "Insufficient temporal data", ha='center', va='center')
plt.title("Temporal Pattern Analysis (Not Available)")
# Save plot to bytes
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plots.append(Image.open(buf))
plt.close()
# Enhanced summary text
summary = f"""Summary Statistics:
Total frames analyzed: {len(data['frame_detections'])}
Total detections: {len(df)}
Average detections per frame: {len(df) / len(data['frame_detections']):.2f}
Detection Patterns:
- Peak detection count: {df.groupby('frame').size().max()} (in a single frame)
- Most common screen region: {df.groupby(['grid_y', 'grid_x']).size().idxmax()}
- Average detection size: {df['area'].mean():.3f}
- Median frames between detections: {detection_gaps.median():.1f}
Video metadata:
"""
for key, value in data["video_metadata"].items():
summary += f"{key}: {value}\n"
return plots[0], plots[1], plots[2], plots[3], plots[4], plots[5], plots[6], plots[7], summary
except Exception as e:
print(f"Error creating visualization: {str(e)}")
import traceback
traceback.print_exc()
return None, None, None, None, None, None, None, None, f"Error creating visualization: {str(e)}"
# Create the Gradio interface
with gr.Blocks(title="Promptable Content Moderation") as app:
with gr.Tabs():
with gr.Tab("Process Video"):
gr.Markdown("# Promptable Content Moderation with Moondream")
gr.Markdown(
"""
Powered by [Moondream 2B](https://github.com/vikhyat/moondream).
Upload a video and specify what to moderate. The app will process each frame and moderate any visual content that matches the prompt. For help, join the [Moondream Discord](https://discord.com/invite/tRUdpjDQfH).
"""
)
with gr.Row():
with gr.Column():
# Input components
video_input = gr.Video(label="Upload Video")
detect_input = gr.Textbox(
label="What to Moderate",
placeholder="e.g. face, cigarette, gun, etc.",
value="face",
info="Moondream can moderate anything that you can describe in natural language",
)
gr.Examples(
examples=[
["examples/cig.mp4", "cigarette"],
["examples/gun.mp4", "gun"],
["examples/homealone.mp4", "face"],
["examples/conf.mp4", "confederate flag"],
],
inputs=[video_input, detect_input],
label="Try these examples",
)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
box_style_input = gr.Radio(
choices=["censor", "bounding-box", "hitmarker", "sam", "sam-fast", "fuzzy-blur", "pixelated-blur", "intense-pixelated-blur", "obfuscated-pixel"],
value="obfuscated-pixel",
label="Visualization Style",
info="Choose how to display moderations: censor (black boxes), bounding-box (red boxes with labels), hitmarker (COD-style markers), sam (precise segmentation), sam-fast (faster but less precise segmentation), fuzzy-blur (Gaussian blur), pixelated-blur (pixelated with blur), obfuscated-pixel (advanced pixelation with neighborhood averaging)",
)
preset_input = gr.Dropdown(
choices=[
"ultrafast",
"superfast",
"veryfast",
"faster",
"fast",
"medium",
"slow",
"slower",
"veryslow",
],
value="medium",
label="Processing Speed (faster = lower quality)",
)
with gr.Row():
rows_input = gr.Slider(
minimum=1, maximum=4, value=1, step=1, label="Grid Rows"
)
cols_input = gr.Slider(
minimum=1, maximum=4, value=1, step=1, label="Grid Columns"
)
test_mode_input = gr.Checkbox(
label="Test Mode (Process first 3 seconds only)",
value=True,
info="Enable to quickly test settings on a short clip before processing the full video (recommended). If using the data visualizations, disable.",
)
test_duration_input = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Test Mode Duration (seconds)",
info="Number of seconds to process in test mode"
)
gr.Markdown(
"""
Note: Processing in test mode will only process the first 3 seconds of the video and is recommended for testing settings.
"""
)
gr.Markdown(
"""
We can get a rough estimate of how long the video will take to process by multiplying the videos framerate * seconds * the number of rows and columns and assuming 0.12 seconds processing time per detection.
For example, a 3 second video at 30fps with 2x2 grid, the estimated time is 3 * 30 * 2 * 2 * 0.12 = 43.2 seconds (tested on a 4090 GPU).
Note: Using the SAM visualization style will increase processing time significantly as it performs additional segmentation for each detection. The sam-fast option uses a smaller model for faster processing at the cost of some accuracy.
"""
)
with gr.Column():
# Output components
video_output = gr.Video(label="Processed Video")
json_output = gr.Text(label="Detection Data Path", visible=False)
# About section under the video output
gr.Markdown(
"""
### Links:
- [GitHub Repository](https://github.com/vikhyat/moondream)
- [Hugging Face](https://huggingface.co/vikhyatk/moondream2)
- [Quick Start](https://docs.moondream.ai/quick-start)
- [Moondream Recipes](https://docs.moondream.ai/recipes)
"""
)
with gr.Tab("Analyze Results"):
gr.Markdown("# Detection Analysis")
gr.Markdown(
"""
Analyze the detection results from processed videos. The analysis includes:
- Basic detection statistics and patterns
- Temporal and spatial distribution analysis
- Size-based categorization
- Screen region analysis
- Detection density patterns
"""
)
with gr.Row():
json_input = gr.File(
label="Upload Detection Data (JSON)",
file_types=[".json"],
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Row():
with gr.Column():
plot1 = gr.Image(
label="Detections Per Frame",
)
plot2 = gr.Image(
label="Detection Areas Distribution",
)
plot5 = gr.Image(
label="Detection Density Timeline",
)
plot6 = gr.Image(
label="Screen Region Analysis",
)
with gr.Column():
plot3 = gr.Image(
label="Average Detection Area Over Time",
)
plot4 = gr.Image(
label="Detection Center Heatmap",
)
plot7 = gr.Image(
label="Detection Size Categories",
)
plot8 = gr.Image(
label="Temporal Pattern Analysis",
)
stats_output = gr.Textbox(
label="Statistics",
info="Summary of key metrics and patterns found in the detection data.",
lines=12,
max_lines=15,
interactive=False
)
# with gr.Tab("Video Visualizations"):
# gr.Markdown("# Real-time Detection Visualization")
# gr.Markdown(
# """
# Watch the detection patterns unfold in real-time. Choose from:
# - Timeline: Shows number of detections over time
# - Gauge: Simple yes/no indicator for current frame detections
# """
# )
# with gr.Row():
# json_input_realtime = gr.File(
# label="Upload Detection Data (JSON)",
# file_types=[".json"],
# )
# viz_style = gr.Radio(
# choices=["timeline", "gauge"],
# value="timeline",
# label="Visualization Style",
# info="Choose between timeline view or simple gauge indicator"
# )
# visualize_btn = gr.Button("Visualize", variant="primary")
# with gr.Row():
# video_visualization = gr.Video(
# label="Detection Visualization",
# interactive=False
# )
# stats_realtime = gr.Textbox(
# label="Video Statistics",
# lines=6,
# max_lines=8,
# interactive=False
# )
# Event handlers
process_outputs = process_btn.click(
fn=process_video_file,
inputs=[
video_input,
detect_input,
box_style_input,
preset_input,
rows_input,
cols_input,
test_mode_input,
test_duration_input,
],
outputs=[video_output, json_output],
)
# Auto-analyze after processing
process_outputs.then(
fn=create_visualization_plots,
inputs=[json_output],
outputs=[plot1, plot2, plot3, plot4, plot5, plot6, plot7, plot8, stats_output],
)
# Manual analysis button
analyze_btn.click(
fn=create_visualization_plots,
inputs=[json_input],
outputs=[plot1, plot2, plot3, plot4, plot5, plot6, plot7, plot8, stats_output],
)
# Video visualization button
# visualize_btn.click(
# fn=lambda json_file, style: create_video_visualization(json_file.name if json_file else None, style),
# inputs=[json_input_realtime, viz_style],
# outputs=[video_visualization, stats_realtime],
# )
if __name__ == "__main__":
app.launch(share=True)
|