import streamlit as st # Set the title and header for the application st.title('Welcome to the NLP Application!') # NLP Introduction with Emojis st.header('🌍 Introduction to Natural Language Processing (NLP)') st.markdown(""" **Natural Language Processing (NLP)** is a field at the intersection of **Artificial Intelligence** and **Linguistics**. It enables machines to understand, interpret, and generate human language. From **speech recognition** to **text summarization** and **machine translation**, NLP is a game changer in technology. 🤖 ### Key NLP Tasks 🔑: - **Text Classification**: Assigning predefined labels to text (e.g., spam detection). - **Named Entity Recognition (NER)**: Identifying entities like names, dates, locations, etc. - **Sentiment Analysis**: Determining the sentiment (positive, negative, neutral) of text. - **Part-of-Speech (POS) Tagging**: Identifying the grammatical components (e.g., noun, verb). - **Machine Translation**: Translating text from one language to another. - **Text Generation**: Creating meaningful text based on input (like this application!). ### Why is NLP Important? 💡 With a massive amount of unstructured textual data available online, **NLP** helps in extracting insights, automating tasks, and providing more personalized services. From chatbots to recommendation systems and search engines, NLP is reshaping how we interact with machines. 🌐 ### Our Application 🌟 In this interactive application, we leverage state-of-the-art models from **Hugging Face** to perform various NLP tasks. Whether you're new to NLP or looking to explore advanced techniques, you're in the right place! Let's dive in! 🚀 """) # Separator st.markdown("---") # About the Creator Section st.write("## 👤 About the Creator") st.markdown(""" **Hi there! 👋 I'm Mende Jagadeesh**, a passionate **AI enthusiast** and **Data Science professional**. With a background in **Machine Learning** and **Big Data Technologies**, I specialize in: """) # Skills Section in Columns skills_col1, skills_col2 = st.columns(2) with skills_col1: st.write("### 🛠️ Skills") st.write(""" - **Programming**: Python, R, SQL - **Data Visualization**: Tableau, Power BI, Matplotlib - **Machine Learning**: Scikit-Learn """) with skills_col2: st.write("### 📚 Experience & Interests") st.write(""" - **Data Science & Analytics**: Building predictive models and analyzing complex datasets. - **Deep Learning**: Exploring cutting-edge models like transformers and neural networks. - **AI Applications**: Solving real-world problems using Artificial Intelligence and Machine Learning. """) # Social Links with Buttons st.write("### 🌐 Connect with Me") col1, col2, col3, col4 = st.columns(4) with col1: st.button("LinkedIn", on_click=lambda: st.write("You can check out my LinkedIn [here](https://www.linkedin.com/in/mende-jagadeesh-02922323a/)")) with col2: st.button("GitHub", on_click=lambda: st.write("You can explore my GitHub [here](https://github.com/Jagadeesh2411)")) with col3: st.button("Email Me", on_click=lambda: st.write("You can reach me at [jagadeesh.mende2401@gmail.com](mailto:jagadeesh.mende2401@gmail.com)")) with col4: st.write("📞 **Contact Number**: 7032440692") # Footer Section st.markdown("---") st.markdown(""" <center> <p style='font-size:14px; color:#888;'> © 2024 AI & Data Science Hub. All Rights Reserved. </p> </center> """, unsafe_allow_html=True)