Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
487ed33
1
Parent(s):
ff0fd39
feat: add phi
Browse files- README.md +1 -1
- app.py +129 -96
- model.py +188 -18
- requirements.txt +3 -2
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🐠
|
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.20.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
CHANGED
@@ -1,109 +1,142 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import
|
4 |
import base64
|
5 |
-
from model import model_id, transcribe_audio_local
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def read_file_as_base64(file_path: str) -> str:
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
"-i",
|
32 |
-
audio,
|
33 |
-
"-ac",
|
34 |
-
"1",
|
35 |
-
"-ar",
|
36 |
-
"16000",
|
37 |
-
audio_resampled,
|
38 |
-
"-y",
|
39 |
-
],
|
40 |
-
check=True,
|
41 |
-
)
|
42 |
-
|
43 |
-
b64 = read_file_as_base64(audio_resampled)
|
44 |
-
url = f"https://api-inference.huggingface.co/models/{model_id}"
|
45 |
-
headers = {
|
46 |
-
"Authorization": f"Bearer {token}",
|
47 |
-
"Content-Type": "application/json",
|
48 |
-
"x-wait-for-model": "true",
|
49 |
-
}
|
50 |
-
data = {
|
51 |
-
"inputs": b64,
|
52 |
-
"parameters": {
|
53 |
-
"generate_kwargs": {
|
54 |
-
"return_timestamps": True,
|
55 |
-
}
|
56 |
-
},
|
57 |
-
}
|
58 |
-
response = requests.post(url, headers=headers, json=data)
|
59 |
-
print(f"{response.text=}")
|
60 |
-
out = response.json()
|
61 |
-
print(f"{out=}")
|
62 |
-
|
63 |
-
return out["text"]
|
64 |
-
|
65 |
-
|
66 |
-
with gr.Blocks() as demo:
|
67 |
-
gr.Markdown("# TWASR: Chinese (Taiwan) Automatic Speech Recognition.")
|
68 |
-
gr.Markdown("Upload an audio file or record your voice to transcribe it to text.")
|
69 |
-
gr.Markdown(
|
70 |
-
"First load may take a while to initialize the model, following requests will be faster."
|
71 |
-
)
|
72 |
-
|
73 |
-
with gr.Row():
|
74 |
-
audio_input = gr.Audio(
|
75 |
-
label="Audio", type="filepath", show_download_button=True
|
76 |
)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
transcribe_button.click(
|
88 |
-
fn=transcribe_audio, inputs=[audio_input], outputs=[text_output]
|
89 |
-
)
|
90 |
-
|
91 |
-
gr.Examples(
|
92 |
-
[
|
93 |
-
["./examples/audio1.mp3"],
|
94 |
-
["./examples/audio2.mp3"],
|
95 |
-
],
|
96 |
-
inputs=[audio_input],
|
97 |
-
outputs=[text_output],
|
98 |
-
fn=transcribe_audio_local,
|
99 |
-
cache_examples=True,
|
100 |
-
cache_mode="lazy",
|
101 |
-
run_on_click=True,
|
102 |
-
)
|
103 |
-
|
104 |
-
gr.Markdown(
|
105 |
-
f"Current model: {model_id}. For more information, visit the [model hub](https://huggingface.co/{model_id})."
|
106 |
-
)
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
import logging
|
4 |
+
from pathlib import Path
|
5 |
import base64
|
|
|
6 |
|
7 |
+
from model import (
|
8 |
+
MODEL_ID as WHISPER_MODEL_ID,
|
9 |
+
PHI_MODEL_ID,
|
10 |
+
transcribe_audio_local,
|
11 |
+
transcribe_audio_phi,
|
12 |
+
preload_models,
|
13 |
+
)
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
18 |
+
)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
# Constants
|
22 |
+
EXAMPLES_DIR = Path("./examples")
|
23 |
+
MODEL_CHOICES = {WHISPER_MODEL_ID: "Whisper Model", PHI_MODEL_ID: "Phi-4 Model"}
|
24 |
+
EXAMPLE_FILES = [
|
25 |
+
(str(EXAMPLES_DIR / "audio1.mp3"), WHISPER_MODEL_ID),
|
26 |
+
(str(EXAMPLES_DIR / "audio2.mp3"), WHISPER_MODEL_ID),
|
27 |
+
]
|
28 |
|
29 |
|
30 |
def read_file_as_base64(file_path: str) -> str:
|
31 |
+
"""
|
32 |
+
Read a file and encode it as base64.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
file_path: Path to the file to read
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
Base64 encoded string of file contents
|
39 |
+
"""
|
40 |
+
try:
|
41 |
+
with open(file_path, "rb") as f:
|
42 |
+
return base64.b64encode(f.read()).decode()
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"Failed to read file {file_path}: {str(e)}")
|
45 |
+
raise
|
46 |
+
|
47 |
+
|
48 |
+
def combined_transcription(audio: str, model_choice: str) -> str:
|
49 |
+
"""
|
50 |
+
Transcribe audio using the selected model.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
audio: Path to audio file
|
54 |
+
model_choice: Full model ID to use for transcription
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
Transcription text
|
58 |
+
"""
|
59 |
+
if not audio:
|
60 |
+
return "Please provide an audio file to transcribe."
|
61 |
+
|
62 |
+
try:
|
63 |
+
if model_choice == PHI_MODEL_ID:
|
64 |
+
return transcribe_audio_phi(audio)
|
65 |
+
elif model_choice == WHISPER_MODEL_ID:
|
66 |
+
return transcribe_audio_local(audio)
|
67 |
+
else:
|
68 |
+
logger.error(f"Unknown model choice: {model_choice}")
|
69 |
+
return f"Error: Unknown model {model_choice}"
|
70 |
+
except Exception as e:
|
71 |
+
logger.error(f"Transcription failed: {str(e)}")
|
72 |
+
return f"Error during transcription: {str(e)}"
|
73 |
+
|
74 |
+
|
75 |
+
def create_demo() -> gr.Blocks:
|
76 |
+
"""Create and configure the Gradio demo interface"""
|
77 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
78 |
+
gr.Markdown("# TWASR: Chinese (Taiwan) Automatic Speech Recognition")
|
79 |
+
gr.Markdown(
|
80 |
+
"Upload an audio file or record your voice to transcribe it to text."
|
81 |
+
)
|
82 |
+
gr.Markdown(
|
83 |
+
"⚠️ First load may take a while to initialize the model, following requests will be faster."
|
84 |
+
)
|
85 |
|
86 |
+
with gr.Row():
|
87 |
+
audio_input = gr.Audio(
|
88 |
+
label="Audio Input", type="filepath", show_download_button=True
|
89 |
+
)
|
90 |
+
with gr.Column():
|
91 |
+
model_choice = gr.Dropdown(
|
92 |
+
label="Select Model",
|
93 |
+
choices=list(MODEL_CHOICES.keys()),
|
94 |
+
value=WHISPER_MODEL_ID,
|
95 |
+
info="Select the model for transcription",
|
96 |
+
)
|
97 |
+
text_output = gr.Textbox(label="Transcription Output", lines=5)
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
transcribe_button = gr.Button("🎯 Transcribe", variant="primary")
|
101 |
+
clear_button = gr.Button("🧹 Clear")
|
102 |
+
|
103 |
+
transcribe_button.click(
|
104 |
+
fn=combined_transcription,
|
105 |
+
inputs=[audio_input, model_choice],
|
106 |
+
outputs=[text_output],
|
107 |
+
show_progress=True,
|
108 |
+
)
|
109 |
|
110 |
+
clear_button.click(
|
111 |
+
fn=lambda: (None, ""),
|
112 |
+
inputs=[],
|
113 |
+
outputs=[audio_input, text_output],
|
114 |
)
|
115 |
|
116 |
+
gr.Examples(
|
117 |
+
EXAMPLE_FILES,
|
118 |
+
inputs=[audio_input, model_choice],
|
119 |
+
outputs=[text_output],
|
120 |
+
fn=combined_transcription,
|
121 |
+
cache_examples=True,
|
122 |
+
cache_mode="lazy",
|
123 |
+
run_on_click=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
+
|
126 |
+
gr.Markdown("### Model Information")
|
127 |
+
with gr.Accordion("Model Details", open=False):
|
128 |
+
for model_id, model_name in MODEL_CHOICES.items():
|
129 |
+
gr.Markdown(
|
130 |
+
f"**{model_name}:** [{model_id}](https://huggingface.co/{model_id})"
|
131 |
+
)
|
132 |
+
|
133 |
+
return demo
|
134 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
if __name__ == "__main__":
|
137 |
+
# Preload models before starting the app to reduce cold start time
|
138 |
+
logger.info("Preloading models to reduce cold start time")
|
139 |
+
preload_models()
|
140 |
+
|
141 |
+
demo = create_demo()
|
142 |
+
demo.launch(share=False)
|
model.py
CHANGED
@@ -1,35 +1,205 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
-
from accelerate import Accelerator
|
3 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import librosa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
global pipe
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def get_gpu_duration(audio: str) -> int:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
@spaces.GPU(duration=get_gpu_duration)
|
26 |
def transcribe_audio_local(audio: str) -> str:
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
from typing import Optional
|
3 |
+
import logging
|
4 |
+
import time
|
5 |
+
import threading
|
6 |
+
|
7 |
+
import torch
|
8 |
import librosa
|
9 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM, Pipeline
|
10 |
+
from accelerate import Accelerator
|
11 |
+
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
15 |
+
)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
# Model constants
|
19 |
+
MODEL_ID = "JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW"
|
20 |
+
PHI_MODEL_ID = "JacobLinCool/Phi-4-multimodal-instruct-commonvoice-zh-tw"
|
21 |
+
USE_FA = torch.cuda.is_available() # Use Flash Attention if CUDA is available
|
22 |
|
23 |
+
# Model instances (initialized lazily)
|
24 |
+
pipe: Optional[Pipeline] = None
|
25 |
+
phi_model = None
|
26 |
+
phi_processor = None
|
27 |
|
28 |
+
# Lock for thread-safe model loading
|
29 |
+
model_loading_lock = threading.Lock()
|
30 |
|
31 |
+
|
32 |
+
def load_model() -> None:
|
33 |
+
"""
|
34 |
+
Load the Whisper model for transcription.
|
35 |
+
Uses GPU if available.
|
36 |
+
"""
|
37 |
global pipe
|
38 |
+
if pipe is not None:
|
39 |
+
return # Model already loaded
|
40 |
+
|
41 |
+
try:
|
42 |
+
start_time = time.time()
|
43 |
+
logger.info(f"Loading Whisper model {MODEL_ID}...")
|
44 |
+
device = Accelerator().device
|
45 |
+
pipe = pipeline("automatic-speech-recognition", model=MODEL_ID, device=device)
|
46 |
+
logger.info(
|
47 |
+
f"Model loaded successfully in {time.time() - start_time:.2f} seconds"
|
48 |
+
)
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Failed to load Whisper model: {str(e)}")
|
51 |
+
raise
|
52 |
|
53 |
|
54 |
def get_gpu_duration(audio: str) -> int:
|
55 |
+
"""
|
56 |
+
Calculate required GPU allocation time based on audio duration.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
audio: Path to audio file
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
GPU allocation time in seconds
|
63 |
+
"""
|
64 |
+
try:
|
65 |
+
y, sr = librosa.load(audio)
|
66 |
+
duration = librosa.get_duration(y=y, sr=sr) / 60.0
|
67 |
+
gpu_duration = max(1.0, (duration + 59.0) // 60.0) * 60.0
|
68 |
+
logger.info(
|
69 |
+
f"Audio duration: {duration:.2f} min, Allocated GPU time: {gpu_duration:.2f} min"
|
70 |
+
)
|
71 |
+
return int(gpu_duration)
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Failed to calculate GPU duration: {str(e)}")
|
74 |
+
return 60 # Default to 1 minute if calculation fails
|
75 |
|
76 |
|
77 |
@spaces.GPU(duration=get_gpu_duration)
|
78 |
def transcribe_audio_local(audio: str) -> str:
|
79 |
+
"""
|
80 |
+
Transcribe audio using the Whisper model.
|
81 |
|
82 |
+
Args:
|
83 |
+
audio: Path to audio file
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
Transcribed text
|
87 |
+
"""
|
88 |
+
try:
|
89 |
+
logger.info(f"Transcribing audio with Whisper: {audio}")
|
90 |
+
if pipe is None:
|
91 |
+
load_model()
|
92 |
+
|
93 |
+
out = pipe(audio, return_timestamps=True)
|
94 |
+
return out.get("text", "No transcription generated")
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Whisper transcription error: {str(e)}")
|
97 |
+
raise
|
98 |
+
|
99 |
+
|
100 |
+
def load_phi_model() -> None:
|
101 |
+
"""
|
102 |
+
Load the Phi-4 model and processor.
|
103 |
+
Uses GPU with Flash Attention if available.
|
104 |
+
"""
|
105 |
+
global phi_model, phi_processor
|
106 |
+
if phi_model is not None and phi_processor is not None:
|
107 |
+
return # Model already loaded
|
108 |
+
|
109 |
+
try:
|
110 |
+
start_time = time.time()
|
111 |
+
logger.info(f"Loading Phi-4 model {PHI_MODEL_ID}...")
|
112 |
+
|
113 |
+
phi_processor = AutoProcessor.from_pretrained(
|
114 |
+
PHI_MODEL_ID, trust_remote_code=True
|
115 |
+
)
|
116 |
|
117 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
+
dtype = torch.bfloat16 if USE_FA else torch.float32
|
119 |
+
attn_implementation = "flash_attention_2" if USE_FA else "sdpa"
|
120 |
|
121 |
+
phi_model = AutoModelForCausalLM.from_pretrained(
|
122 |
+
PHI_MODEL_ID,
|
123 |
+
torch_dtype=dtype,
|
124 |
+
_attn_implementation=attn_implementation,
|
125 |
+
trust_remote_code=True,
|
126 |
+
).to(device)
|
127 |
+
|
128 |
+
logger.info(
|
129 |
+
f"Phi-4 model loaded successfully in {time.time() - start_time:.2f} seconds"
|
130 |
+
)
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Failed to load Phi-4 model: {str(e)}")
|
133 |
+
raise
|
134 |
+
|
135 |
+
|
136 |
+
def transcribe_audio_phi(audio: str) -> str:
|
137 |
+
"""
|
138 |
+
Transcribe audio using the Phi-4 model.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
audio: Path to audio file
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
Transcribed text
|
145 |
+
"""
|
146 |
+
try:
|
147 |
+
logger.info(f"Transcribing audio with Phi-4: {audio}")
|
148 |
+
load_phi_model()
|
149 |
+
|
150 |
+
# Load and resample audio to 16kHz
|
151 |
+
y, sr = librosa.load(audio, sr=16000)
|
152 |
+
|
153 |
+
# Prepare the user message and generate the prompt
|
154 |
+
user_message = {
|
155 |
+
"role": "user",
|
156 |
+
"content": "<|audio_1|> Transcribe the audio clip into text.",
|
157 |
+
}
|
158 |
+
prompt = phi_processor.tokenizer.apply_chat_template(
|
159 |
+
[user_message], tokenize=False, add_generation_prompt=True
|
160 |
+
)
|
161 |
+
|
162 |
+
# Build inputs for the model
|
163 |
+
inputs = phi_processor(text=prompt, audios=[(y, sr)], return_tensors="pt")
|
164 |
+
inputs = {
|
165 |
+
k: v.to(phi_model.device) if hasattr(v, "to") else v
|
166 |
+
for k, v in inputs.items()
|
167 |
+
}
|
168 |
+
|
169 |
+
# Generate transcription without gradients
|
170 |
+
with torch.no_grad():
|
171 |
+
generated_ids = phi_model.generate(
|
172 |
+
**inputs,
|
173 |
+
eos_token_id=phi_processor.tokenizer.eos_token_id,
|
174 |
+
max_new_tokens=256, # Increased for longer transcriptions
|
175 |
+
do_sample=False,
|
176 |
+
)
|
177 |
+
|
178 |
+
# Decode the generated token IDs into text
|
179 |
+
transcription = phi_processor.decode(
|
180 |
+
generated_ids[0, inputs["input_ids"].shape[1] :],
|
181 |
+
skip_special_tokens=True,
|
182 |
+
clean_up_tokenization_spaces=False,
|
183 |
+
)
|
184 |
+
|
185 |
+
logger.info(f"Phi-4 transcription completed successfully")
|
186 |
+
return transcription
|
187 |
+
except Exception as e:
|
188 |
+
logger.error(f"Phi-4 transcription error: {str(e)}")
|
189 |
+
raise
|
190 |
+
|
191 |
+
|
192 |
+
def preload_models() -> None:
|
193 |
+
"""
|
194 |
+
Preload models into memory to reduce cold start time.
|
195 |
+
This function can be called at application startup.
|
196 |
+
"""
|
197 |
+
try:
|
198 |
+
logger.info("Preloading models to reduce cold start time")
|
199 |
+
# Load Whisper model first as it's the default
|
200 |
+
load_model()
|
201 |
+
# Then load Phi model
|
202 |
+
load_phi_model()
|
203 |
+
logger.info("All models preloaded successfully")
|
204 |
+
except Exception as e:
|
205 |
+
logger.error(f"Error during model preloading: {str(e)}")
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
-
gradio==5.
|
2 |
-
huggingface_hub
|
3 |
transformers
|
4 |
accelerate
|
5 |
spaces
|
6 |
librosa
|
|
|
|
1 |
+
gradio==5.20.1
|
2 |
+
huggingface_hub
|
3 |
transformers
|
4 |
accelerate
|
5 |
spaces
|
6 |
librosa
|
7 |
+
flash-attn
|