File size: 10,838 Bytes
09eaf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# -*- coding: utf-8 -*-
"""
Faster Demucs separation for MacBook Pro (CPU by default; CUDA-friendly).

Key speedups (without breaking outputs):
- Use segmented inference (segment ~10-12s) + small overlap to reduce FFT cost and RAM.
- Clamp shifts on CPU (1) and keep small on GPU (2) for big speed gains (shifts is linear-time).
- Use torch.inference_mode() for faster no-grad path.
- Cache a single torchaudio Resample transform.
- Cap OMP/MKL threads to avoid oversubscription on laptop CPUs.
- Preallocate and accumulate 'instruments' in-place (avoids tensor churn).
- Keep outputs on CPU to reduce device swaps; on CUDA, run model+input in float16.

Public API preserved:
    init_demucs()
    load_model(...)
    release_model()
    separate_audio(folder, ...)
    extract_audio_from_video(folder)
    separate_all_audio_under_folder(root_folder, ...)
"""

import os
import time
import math
import gc
from typing import Tuple, Optional

# ---- Threading caps (greatly helps FFT-heavy CPU runs) ----
MAX_THREADS = max(1, min(8, os.cpu_count() or 4))
os.environ.setdefault("OMP_NUM_THREADS", str(MAX_THREADS))
os.environ.setdefault("MKL_NUM_THREADS", str(MAX_THREADS))

from loguru import logger

import torch
import torchaudio
import torchaudio.functional as AF
from torchaudio.transforms import Resample

# Demucs programmatic API
from demucs import pretrained
from demucs.apply import apply_model

from .utils import save_wav, normalize_wav  # noqa: F401

if torch.cuda.is_available():
    torch.backends.cudnn.benchmark = True

# -----------------------------
# Globals
# -----------------------------
auto_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
_model: Optional[torch.nn.Module] = None
_model_loaded: bool = False
current_model_config = {}
_resampler: Optional[Resample] = None
_TARGET_SR = 44100


def _pick_device(device: str):
    return auto_device if device == 'auto' else torch.device(device)


def _defaults_for_hardware():
    if torch.cuda.is_available():
        return dict(shifts=2, segment=12.0, overlap=0.10, dtype=torch.float16)
    else:
        return dict(shifts=1, segment=10.0, overlap=0.10, dtype=torch.float32)


def init_demucs():
    global _model, _model_loaded
    if not _model_loaded:
        _model = load_model()
        _model_loaded = True
    else:
        logger.info("Demucs model already loaded — skipping initialization.")


def load_model(model_name: str = "htdemucs_ft",
               device: str = 'auto',
               progress: bool = True,
               shifts: int = 5):
    global _model, _model_loaded, current_model_config

    hw = _defaults_for_hardware()
    shifts = int(shifts) if shifts is not None else hw["shifts"]
    if (not torch.cuda.is_available()) and shifts > 1:
        shifts = hw["shifts"]

    requested_config = {
        'model_name': model_name,
        'device': 'auto' if device == 'auto' else str(device),
        'shifts': shifts
    }

    if _model is not None and current_model_config == requested_config:
        logger.info('Demucs model already loaded with the same configuration — reusing existing model.')
        return _model

    if _model is not None:
        logger.info('Demucs configuration changed — reloading model.')
        release_model()

    logger.info(f'Loading Demucs model: {model_name}')
    t_start = time.time()

    device_to_use = _pick_device(device)

    model = pretrained.get_model(model_name)
    model.eval()
    model.to(device_to_use)
    if torch.cuda.is_available():
        model.half()

    current_model_config = requested_config
    _model = model
    _model_loaded = True

    logger.info(f'Demucs model loaded successfully in {time.time() - t_start:.2f}s.')
    return _model


def release_model():
    global _model, _model_loaded, current_model_config

    if _model is not None:
        logger.info('Releasing Demucs model resources...')
        _model = None
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        _model_loaded = False
        current_model_config = {}
        logger.info('Demucs model resources released.')


def _get_resampler(orig_sr: int, new_sr: int):
    global _resampler
    if _resampler is None or _resampler.orig_freq != orig_sr or _resampler.new_freq != new_sr:
        _resampler = Resample(orig_freq=orig_sr, new_freq=new_sr)
    return _resampler


def _load_audio_as_tensor(path: str, target_sr: int = _TARGET_SR) -> torch.Tensor:
    wav, sr = torchaudio.load(path)
    if sr != target_sr:
        resampler = _get_resampler(sr, target_sr)
        wav = resampler(wav)
        sr = target_sr

    if wav.shape[0] > 2:
        wav = wav[:2, :]
    return wav.contiguous().float()


def _pick_aligned_segment_seconds(model, clip_num_samples: int, sr: int) -> tuple[float | None, float]:
    training_len = getattr(model, "training_length", None)
    model_sr = getattr(model, "samplerate", sr)

    if not training_len or model_sr <= 0:
        return None, 0.10

    base_seg_s = training_len / float(model_sr)
    T = clip_num_samples / float(sr)
    k = int(T // base_seg_s)
    k = max(1, min(k, 3))
    segment_s = k * base_seg_s

    overlap = 0.10 if segment_s > 0.15 else 0.05
    if overlap >= segment_s:
        overlap = max(0.0, 0.5 * segment_s)

    return segment_s, overlap


def separate_audio(folder: str,
                   model_name: str = "htdemucs_ft",
                   device: str = 'auto',
                   progress: bool = True,
                   shifts: int = 5):
    global _model

    audio_path = os.path.join(folder, 'audio.wav')
    if not os.path.exists(audio_path):
        return None, None

    vocal_output_path = os.path.join(folder, 'audio_vocals.wav')
    instruments_output_path = os.path.join(folder, 'audio_instruments.wav')

    if os.path.exists(vocal_output_path) and os.path.exists(instruments_output_path):
        logger.info(f'Audio already separated: {folder}')
        return vocal_output_path, instruments_output_path

    logger.info(f'Separating audio: {folder}')

    try:
        need_reload = (
            (not _model_loaded) or
            current_model_config.get('model_name') != model_name or
            (current_model_config.get('device') == 'auto') != (device == 'auto') or
            current_model_config.get('shifts') != int(shifts)
        )
        if need_reload:
            load_model(model_name, device, progress, shifts)

        device_to_use = _pick_device(device)

        t_start = time.time()
        wav = _load_audio_as_tensor(audio_path, target_sr=_TARGET_SR)
        C, T_samples = wav.shape

        segment_s, overlap = _pick_aligned_segment_seconds(_model, T_samples, _TARGET_SR)

        wav_in = wav.unsqueeze(0)
        if device_to_use.type == 'cuda':
            wav_in = wav_in.to(device_to_use, non_blocking=True).half()
        else:
            wav_in = wav_in.to(device_to_use, non_blocking=True)

        eff_shifts = current_model_config.get('shifts', 1)

        with torch.inference_mode():
            sources_tensor = apply_model(
                _model,
                wav_in,
                shifts=eff_shifts,
                progress=progress,
                overlap=overlap,
                split=True,
                segment=segment_s,
            )[0]

        sources_tensor = sources_tensor.to(dtype=torch.float32, device='cpu')
        name_to_src = {name: sources_tensor[i] for i, name in enumerate(_model.sources)}

        vocals = name_to_src.get('vocals')
        if vocals is None:
            logger.warning("This Demucs model does not include a 'vocals' stem — generating silent vocals.")
            vocals = torch.zeros_like(wav)

        instruments = torch.zeros_like(vocals)
        for k, v in name_to_src.items():
            if k != 'vocals':
                instruments.add_(v)

        if not instruments.abs().sum().item():
            instruments = wav - vocals

        save_wav(vocals.transpose(0, 1).numpy(), vocal_output_path, sample_rate=_TARGET_SR)
        logger.info(f'Saved vocals: {vocal_output_path}')

        save_wav(instruments.transpose(0, 1).numpy(), instruments_output_path, sample_rate=_TARGET_SR)
        logger.info(f'Saved accompaniment: {instruments_output_path}')

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        logger.info(f'Audio separation complete in {time.time() - t_start:.2f}s.')
        return vocal_output_path, instruments_output_path

    except Exception as e:
        logger.error(f'Audio separation failed: {str(e)}')
        release_model()
        raise


def extract_audio_from_video(folder: str) -> bool:
    video_path = os.path.join(folder, 'download.mp4')
    if not os.path.exists(video_path):
        return False

    audio_path = os.path.join(folder, 'audio.wav')
    if os.path.exists(audio_path):
        logger.info(f'Audio already extracted: {folder}')
        return True

    logger.info(f'Extracting audio from video: {folder}')
    os.system(
        f'ffmpeg -loglevel error -i "{video_path}" -vn -acodec pcm_s16le -ar {_TARGET_SR} -ac 2 "{audio_path}"'
    )
    time.sleep(0.5)
    logger.info(f'Audio extraction complete: {folder}')
    return True


def separate_all_audio_under_folder(root_folder: str,
                                    model_name: str = "htdemucs_ft",
                                    device: str = 'auto',
                                    progress: bool = True,
                                    shifts: int = 5):
    vocal_output_path, instruments_output_path = None, None

    try:
        for subdir, dirs, files in os.walk(root_folder):
            files_set = set(files)
            if 'download.mp4' not in files_set:
                continue
            if 'audio.wav' not in files_set:
                extract_audio_from_video(subdir)
                files_set = set(os.listdir(subdir))
            if 'audio_vocals.wav' not in files_set or 'audio_instruments.wav' not in files_set:
                vocal_output_path, instruments_output_path = separate_audio(
                    subdir, model_name, device, progress, shifts
                )
            else:
                vocal_output_path = os.path.join(subdir, 'audio_vocals.wav')
                instruments_output_path = os.path.join(subdir, 'audio_instruments.wav')
                logger.info(f'Audio already separated: {subdir}')

        logger.info(f'All audio separation completed under: {root_folder}')
        return f'All audio separated: {root_folder}', vocal_output_path, instruments_output_path

    except Exception as e:
        logger.error(f'Error during audio separation: {str(e)}')
        release_model()
        raise


if __name__ == '__main__':
    folder = r"videos"
    separate_all_audio_under_folder(folder, shifts=1)