Spaces:
Build error
Build error
File size: 26,163 Bytes
09eaf7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
# -*- coding: utf-8 -*-
"""
tools/do_everything.py
End-to-end pipeline with post-TTS Emotion control automated by
Higgs-understanding (windowed + crossfaded), using ONLY the auto batch.
UI values supported:
- "natural" -> skip emotion shaping
- "happy" -> treated as "auto-happy"
- "sad" -> treated as "auto-sad"
- "angry" -> treated as "auto-angry"
- "auto-*" -> respected as-is (e.g., "auto-happy", "auto-sad", "auto-angry")
Requires:
tools/step045_emotion_auto_batch.py
"""
import json
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor
from typing import Optional
import torch
from loguru import logger
from .step000_video_downloader import (
get_info_list_from_url,
download_single_video,
get_target_folder,
)
from .step010_demucs_vr import separate_all_audio_under_folder, init_demucs, release_model
from .step020_asr import transcribe_all_audio_under_folder
# from .step021_asr_whisperx import init_whisperx, init_diarize
from .step022_asr_funasr import init_funasr
from .step030_translation import translate_all_transcript_under_folder
from .step040_tts import generate_all_wavs_under_folder
from .step042_tts_xtts import init_TTS
from .step043_tts_cosyvoice import init_cosyvoice
from .step050_synthesize_video import synthesize_all_video_under_folder
# ONLY import the auto emotion batch
from .step047_emotion_auto_batch import auto_tune_emotion_all_wavs_under_folder
# Track which heavy models were initialized (process lifetime)
models_initialized = {
"demucs": False,
"xtts": False,
"cosyvoice": False,
"diarize": False,
"funasr": False,
# Higgs ASR/TTS are API-based; kept out of init gating intentionally
}
# ------------------------------------------------------------------------------------
# Unified language normalization
# Accept BOTH UI labels and codes; normalize to codes: zh-cn, zh-tw, en, ko, es, fr
# ------------------------------------------------------------------------------------
# Rich alias tables -> language code
_TRANSLATION_ALIASES = {
# Simplified Chinese
"simplified chinese (简体中文)": "zh-cn",
"简体中文": "zh-cn",
"simplified chinese": "zh-cn",
"chinese (simplified)": "zh-cn",
"zh-cn": "zh-cn",
"cn": "zh-cn",
# Traditional Chinese
"traditional chinese (繁体中文)": "zh-tw",
"繁体中文": "zh-tw",
"traditional chinese": "zh-tw",
"chinese (traditional)": "zh-tw",
"zh-tw": "zh-tw",
"tw": "zh-tw",
# English
"english": "en",
"en": "en",
# Korean
"korean": "ko",
"한국어": "ko",
"ko": "ko",
# Spanish
"spanish": "es",
"español": "es",
"es": "es",
}
_TTS_ALIASES = {
# Chinese (generic UI label) -> use Simplified by default unless caller passed zh-tw explicitly
"chinese (中文)": "zh-cn",
"中文": "zh-cn",
"chinese": "zh-cn",
"zh": "zh-cn",
"zh-cn": "zh-cn",
# Traditional Chinese explicit
"traditional chinese": "zh-tw",
"繁体中文": "zh-tw",
"zh-tw": "zh-tw",
# English
"english": "en",
"en": "en",
# Korean
"korean": "ko",
"한국어": "ko",
"ko": "ko",
# Spanish
"spanish": "es",
"español": "es",
"es": "es",
# French
"french": "fr",
"français": "fr",
"fr": "fr",
}
_ALLOWED_SUB_LANGS = {"zh-cn", "zh-tw", "en", "ko", "es"}
_ALLOWED_TTS_LANGS = {"zh-cn", "zh-tw", "en", "ko", "es", "fr"}
def _canon(s: Optional[str]) -> Optional[str]:
if s is None:
return None
return str(s).strip().lower()
def _norm_translation_lang(ui_label_or_code: str) -> str:
"""Normalize subtitle/translation target to code."""
key = _canon(ui_label_or_code)
code = _TRANSLATION_ALIASES.get(key, key)
if code not in _ALLOWED_SUB_LANGS:
raise ValueError(f"Unrecognized subtitle/translation language: {ui_label_or_code}")
return code
def _norm_tts_lang(ui_label_or_code: str) -> str:
"""Normalize TTS target to code."""
key = _canon(ui_label_or_code)
code = _TTS_ALIASES.get(key, key)
if code not in _ALLOWED_TTS_LANGS:
raise ValueError(f"Unrecognized TTS language: {ui_label_or_code}")
return code
def _coerce_int_or_none(x):
if x in (None, "", "None"):
return None
try:
return int(x)
except Exception:
return None
def get_available_gpu_memory() -> float:
"""Return available GPU memory in GiB (0 if CUDA is unavailable or an error occurs)."""
try:
if torch.cuda.is_available():
total = torch.cuda.get_device_properties(0).total_memory
used = torch.cuda.memory_allocated(0)
return (total - used) / (1024 ** 3)
return 0.0
except Exception:
return 0.0
def initialize_models(tts_method: str, asr_method: str, diarization: bool) -> None:
"""
Initialize required models exactly once per process.
Uses a thread pool for parallel cold-start, then waits for completion.
"""
global models_initialized
futures = []
try:
with ThreadPoolExecutor(max_workers=2) as executor:
# Demucs
if not models_initialized["demucs"]:
futures.append(executor.submit(init_demucs))
models_initialized["demucs"] = True
logger.info("Initialized Demucs")
else:
logger.info("Demucs already initialized — skipping")
# TTS
if tts_method == "xtts":
if not models_initialized["xtts"]:
futures.append(executor.submit(init_TTS))
models_initialized["xtts"] = True
logger.info("Initialized XTTS")
elif tts_method == "cosyvoice":
if not models_initialized["cosyvoice"]:
futures.append(executor.submit(init_cosyvoice))
models_initialized["cosyvoice"] = True
logger.info("Initialized CosyVoice")
elif tts_method == "Higgs":
# API-based; nothing to init locally
logger.info("TTS 'Higgs' selected — API-based")
# ASR (local initializers when applicable)
# if asr_method == "WhisperX":
# if not models_initialized["whisperx"]:
# futures.append(executor.submit(init_whisperx))
# models_initialized["whisperx"] = True
# logger.info("Initialized WhisperX")
# if diarization and not models_initialized["diarize"]:
# futures.append(executor.submit(init_diarize))
# models_initialized["diarize"] = True
# logger.info("Initialized diarization")
if asr_method == "FunASR":
if not models_initialized["funasr"]:
futures.append(executor.submit(init_funasr))
models_initialized["funasr"] = True
logger.info("Initialized FunASR")
elif asr_method == "Higgs":
# API-based; no local model to init
logger.info("ASR 'Higgs' selected — API-based, no local initialization required")
# Ensure any init exception gets raised here
for fut in futures:
fut.result()
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Failed to initialize models: {e}\n{stack_trace}")
# Reset flags to allow retry and free any partially loaded state
models_initialized = {k: False for k in models_initialized}
release_model()
raise
def process_video(
info,
root_folder,
resolution,
demucs_model,
device,
shifts,
asr_method,
whisper_model,
batch_size,
diarization,
whisper_min_speakers,
whisper_max_speakers,
translation_method,
translation_target_language, # may be label or code
tts_method,
tts_target_language, # may be label or code
voice,
subtitles,
speed_up,
fps,
background_music,
bgm_volume,
video_volume,
target_resolution,
max_retries,
progress_callback=None,
*,
emotion: str = "natural",
emotion_strength: float = 0.6,
):
"""
Process a single video end-to-end with optional progress callback.
progress_callback(progress_percent: int, status_message: str) -> None
"""
# Progress stages: (label, weight_total_percent)
stages = [
("Downloading video...", 10),
("Separating vocals...", 15),
("Speech recognition...", 20),
("Translating subtitles...", 25),
("Synthesizing speech...", 20),
("Compositing video...", 10),
]
current_stage = 0
progress_base = 0
if progress_callback:
progress_callback(0, "Preparing...")
for retry in range(max_retries):
try:
# Stage: Download
stage_name, stage_weight = stages[current_stage]
if progress_callback:
progress_callback(progress_base, stage_name)
if isinstance(info, str) and info.endswith(".mp4"):
# Local file mode: place it under <root_folder>/<basename>/download.mp4
import shutil
original_file_name = os.path.basename(info)
folder_name = os.path.splitext(original_file_name)[0]
folder = os.path.join(root_folder, folder_name)
os.makedirs(folder, exist_ok=True)
dest_path = os.path.join(folder, "download.mp4")
shutil.copy(info, dest_path)
else:
folder = get_target_folder(info, root_folder)
if folder is None:
error_msg = f'Unable to derive target folder: {info.get("title") if isinstance(info, dict) else info}'
logger.warning(error_msg)
return False, None, error_msg
folder = download_single_video(info, root_folder, resolution)
if folder is None:
error_msg = f'Download failed: {info.get("title") if isinstance(info, dict) else info}'
logger.warning(error_msg)
return False, None, error_msg
logger.info(f"Processing video folder: {folder}")
# Stage: Vocal separation
current_stage += 1
progress_base += stage_weight
stage_name, stage_weight = stages[current_stage]
if progress_callback:
progress_callback(progress_base, stage_name)
try:
status, vocals_path, _ = separate_all_audio_under_folder(
folder, model_name=demucs_model, device=device, progress=True, shifts=shifts
)
logger.info(f"Vocal separation complete: {vocals_path}")
except Exception as e:
stack_trace = traceback.format_exc()
error_msg = f"Vocal separation failed: {e}\n{stack_trace}"
logger.error(error_msg)
return False, None, error_msg
# Stage: ASR
current_stage += 1
progress_base += stage_weight
stage_name, stage_weight = stages[current_stage]
if progress_callback:
progress_callback(progress_base, stage_name)
try:
# Coerce radios to int/None if needed
whisper_min_speakers_c = _coerce_int_or_none(whisper_min_speakers)
whisper_max_speakers_c = _coerce_int_or_none(whisper_max_speakers)
status, result_json = transcribe_all_audio_under_folder(
folder,
asr_method=asr_method,
whisper_model_name=whisper_model, # ignored by Higgs path if implemented that way
device=device,
batch_size=batch_size,
diarization=diarization,
min_speakers=whisper_min_speakers_c,
max_speakers=whisper_max_speakers_c,
)
logger.info(f"ASR completed: {status}")
except Exception as e:
stack_trace = traceback.format_exc()
error_msg = f"ASR failed: {e}\n{stack_trace}"
logger.error(error_msg)
return False, None, error_msg
# Stage: Translation
current_stage += 1
progress_base += stage_weight
stage_name, stage_weight = stages[current_stage]
if progress_callback:
progress_callback(progress_base, stage_name)
try:
# Normalize subtitle/translation target (label or code -> code)
translation_target_language = _norm_translation_lang(translation_target_language)
logger.info(f"Subtitle/Translation language (code): {translation_target_language}")
msg, summary, translation = translate_all_transcript_under_folder(
folder, method=translation_method, target_language=translation_target_language
)
logger.info(f"Translation completed: {msg}")
except Exception as e:
stack_trace = traceback.format_exc()
error_msg = f"Translation failed: {e}\n{stack_trace}"
logger.error(error_msg)
return False, None, error_msg
# Stage: TTS
current_stage += 1
progress_base += stage_weight
stage_name, stage_weight = stages[current_stage]
if progress_callback:
progress_callback(progress_base, stage_name)
try:
# Normalize TTS language (label or code -> code)
tts_target_language = _norm_tts_lang(tts_target_language)
logger.info(f"TTS target language (code): {tts_target_language}")
status, synth_path, _ = generate_all_wavs_under_folder(
folder, method=tts_method, target_language=tts_target_language, voice=voice
)
logger.info(f"TTS completed: {synth_path}")
except Exception as e:
stack_trace = traceback.format_exc()
error_msg = f"TTS failed: {e}\n{stack_trace}"
logger.error(error_msg)
return False, None, error_msg
# NEW Stage: Emotion shaping (auto via Higgs-understanding)
try:
# Map "happy"|"sad"|"angry" to "auto-happy"|... ; keep "natural" as skip
_emotion = (emotion or "natural").strip().lower()
if _emotion in ("happy", "sad", "angry"):
_emotion = f"auto-{_emotion}"
if _emotion.startswith("auto"):
_lang_hint = tts_target_language or "en" # already normalized code
ok, emsg = auto_tune_emotion_all_wavs_under_folder(
folder,
emotion=_emotion, # "auto-happy"/"auto-sad"/"auto-angry"/"auto"
strength=float(emotion_strength),
lang_hint=_lang_hint,
win_s=10.0,
hop_s=9.0,
xfade_ms=int(os.getenv("HIGGS_TTS_XFADE_MS", "28")),
latency_budget_s=0.5,
min_confidence=0.50,
max_iters=2,
)
logger.info(f"Emotion (AUTO) shaping: {emsg}")
else:
logger.info("Emotion preset is natural — skipping.")
except Exception as e:
logger.warning(f"Emotion shaping step failed but continuing: {e}")
# Stage: Synthesis (video)
current_stage += 1
progress_base += stage_weight
stage_name, stage_weight = stages[current_stage]
if progress_callback:
progress_callback(progress_base, stage_name)
try:
status, output_video = synthesize_all_video_under_folder(
folder,
subtitles=subtitles,
speed_up=speed_up,
fps=fps,
resolution=target_resolution,
background_music=background_music,
bgm_volume=bgm_volume,
video_volume=video_volume,
)
logger.info(f"Video composition completed: {output_video}")
except Exception as e:
stack_trace = traceback.format_exc()
error_msg = f"Video composition failed: {e}\n{stack_trace}"
logger.error(error_msg)
return False, None, error_msg
# Done
if progress_callback:
progress_callback(100, "Completed!")
return True, output_video, "Success"
except Exception as e:
stack_trace = traceback.format_exc()
title = info.get("title") if isinstance(info, dict) else info
error_msg = f"Error while processing {title}: {e}\n{stack_trace}"
logger.error(error_msg)
if retry < max_retries - 1:
logger.info(f"Retrying {retry + 2}/{max_retries}...")
else:
return False, None, error_msg
return False, None, f"Max retries reached: {max_retries}"
def do_everything(
root_folder,
url,
num_videos=5,
resolution="1080p",
demucs_model="htdemucs_ft",
device="auto",
shifts=5,
asr_method="Higgs", # <-- matches UI default
whisper_model="large",
batch_size=32,
diarization=False,
whisper_min_speakers=None,
whisper_max_speakers=None,
translation_method="LLM",
translation_target_language="zh-cn", # default code (was UI label)
tts_method="Higgs", # <-- matches UI default
tts_target_language="zh-cn", # default code (UI should override)
voice="zh-CN-XiaoxiaoNeural",
subtitles=True,
speed_up=1.00,
fps=30,
background_music=None,
bgm_volume=0.5,
video_volume=1.0,
target_resolution="1080p",
max_workers=3,
max_retries=5,
progress_callback=None,
*,
emotion: str = "natural", # "natural" | "happy" | "sad" | "angry" | "auto-*" | "auto"
emotion_strength: float = 0.6, # 0..1
):
"""
Full pipeline entrypoint with an optional progress callback.
Returns:
(summary_text: str, last_output_video_path: Optional[str])
"""
try:
success_list = []
fail_list = []
error_details = []
# Normalize the possibly human-readable inputs to codes up-front
try:
translation_target_language = _norm_translation_lang(translation_target_language)
tts_target_language = _norm_tts_lang(tts_target_language)
except Exception as e:
logger.error(f"Language normalization error: {e}")
return f"Language normalization error: {e}", None
logger.info("-" * 50)
logger.info(f"Starting job: {url}")
logger.info(f"Output folder={root_folder}, videos={num_videos}, download_res={resolution}")
logger.info(f"Vocal separation: model={demucs_model}, device={device}, shifts={shifts}")
logger.info(f"ASR: method={asr_method}, model={whisper_model}, batch_size={batch_size}, diarization={diarization}")
logger.info(f"Translate: method={translation_method}, target_lang(code)={translation_target_language}")
logger.info(f"TTS: method={tts_method}, target_lang(code)={tts_target_language}, voice={voice}")
logger.info(f"Emotion(AUTO): preset={emotion}, strength={emotion_strength:.2f}")
logger.info(f"Video compose: subtitles={subtitles}, speed={speed_up}, FPS={fps}, render_res={target_resolution}")
logger.info("-" * 50)
# Normalize multiline URL list; allow comma/Chinese comma separators
normalized = (url or "").replace(" ", "").replace(",", "\n").replace(",", "\n")
urls = [u for u in normalized.split("\n") if u]
# Warm up models once
try:
if progress_callback:
progress_callback(5, "Initializing models...")
initialize_models(tts_method, asr_method, diarization)
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Model initialization failed: {e}\n{stack_trace}")
return f"Model initialization failed: {e}", None
out_video: Optional[str] = None
# Local file convenience: handle a single .mp4 path
if url.endswith(".mp4"):
try:
success, output_video, error_msg = process_video(
url, # pass the actual file path
root_folder,
resolution,
demucs_model,
device,
shifts,
asr_method,
whisper_model,
batch_size,
diarization,
whisper_min_speakers,
whisper_max_speakers,
translation_method,
translation_target_language,
tts_method,
tts_target_language,
voice,
subtitles,
speed_up,
fps,
background_music,
bgm_volume,
video_volume,
target_resolution,
max_retries,
progress_callback,
# NEW
emotion=emotion,
emotion_strength=emotion_strength,
)
if success:
logger.info(f"Local video processed successfully: {url}")
return "Success", output_video
else:
logger.error(f"Local video failed: {url}, error: {error_msg}")
return f"Failed: {error_msg}", None
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Failed to process local video: {e}\n{stack_trace}")
return f"Failed to process local video: {e}", None
# Remote URLs
try:
videos_info = []
if progress_callback:
progress_callback(10, "Fetching video info...")
for video_info in get_info_list_from_url(urls, num_videos):
videos_info.append(video_info)
if not videos_info:
return "Failed to retrieve video info. Please check the URL(s).", None
for info in videos_info:
try:
success, output_video, error_msg = process_video(
info,
root_folder,
resolution,
demucs_model,
device,
shifts,
asr_method,
whisper_model,
batch_size,
diarization,
whisper_min_speakers,
whisper_max_speakers,
translation_method,
translation_target_language,
tts_method,
tts_target_language,
voice,
subtitles,
speed_up,
fps,
background_music,
bgm_volume,
video_volume,
target_resolution,
max_retries,
progress_callback,
# NEW
emotion=emotion,
emotion_strength=emotion_strength,
)
if success:
success_list.append(info)
out_video = output_video
logger.info(f"Processed: {info['title'] if isinstance(info, dict) else info}")
else:
fail_list.append(info)
error_details.append(
f"{info['title'] if isinstance(info, dict) else info}: {error_msg}"
)
logger.error(
f"Failed: {info['title'] if isinstance(info, dict) else info}, error: {error_msg}"
)
except Exception as e:
stack_trace = traceback.format_exc()
fail_list.append(info)
error_details.append(
f"{info['title'] if isinstance(info, dict) else info}: {e}"
)
logger.error(
f"Error: {info['title'] if isinstance(info, dict) else info}, error: {e}\n{stack_trace}"
)
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Failed to get video list: {e}\n{stack_trace}")
return f"Failed to get video list: {e}", None
# Summary
logger.info("-" * 50)
logger.info(f"Done. success={len(success_list)}, failed={len(fail_list)}")
if error_details:
logger.info("Failure details:")
for detail in error_details:
logger.info(f" - {detail}")
return f"Success: {len(success_list)}\nFailed: {len(fail_list)}", out_video
except Exception as e:
stack_trace = traceback.format_exc()
error_msg = f"Pipeline error: {e}\n{stack_trace}"
logger.error(error_msg)
return error_msg, None
|