Spaces:
Sleeping
Sleeping
Commit
·
0142759
1
Parent(s):
afe2482
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,77 @@
|
|
1 |
-
import subprocess
|
2 |
-
import os
|
3 |
-
import nerf
|
4 |
import torch
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
# Create the directory
|
9 |
-
os.mkdir("Model")
|
10 |
|
11 |
-
# Check if the model is downloaded
|
12 |
-
if not os.path.exists("Model/nerf_model.ckpt"):
|
13 |
-
# Download the model using the subprocess module
|
14 |
-
subprocess.run(["wget", "https://github.com/bmild/nerf/releases/download/v0.5/nerf_model.ckpt"])
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
fov=60,
|
22 |
-
focal_length=50,
|
23 |
-
znear=1,
|
24 |
-
zfar=100,
|
25 |
-
principal_point=(0.5, 0.5),
|
26 |
-
)
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
|
31 |
-
#
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import torch.utils.data as data
|
5 |
|
6 |
+
from nerf import NeRF
|
7 |
+
from dataset import Dataset
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def train(nerf, dataloader, optimizer, device):
|
11 |
+
nerf.train()
|
12 |
+
for i, data in enumerate(dataloader):
|
13 |
+
# Get the input and target images.
|
14 |
+
viewdirs, radiances = data
|
15 |
+
viewdirs = viewdirs.to(device)
|
16 |
+
radiances = radiances.to(device)
|
17 |
|
18 |
+
# Forward pass.
|
19 |
+
outputs = nerf(viewdirs)
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Compute the loss.
|
22 |
+
loss = nn.functional.mse_loss(outputs, radiances)
|
23 |
|
24 |
+
# Backpropagate the loss.
|
25 |
+
optimizer.zero_grad()
|
26 |
+
loss.backward()
|
27 |
+
optimizer.step()
|
28 |
|
29 |
+
|
30 |
+
def test(nerf, dataloader, device):
|
31 |
+
nerf.eval()
|
32 |
+
psnrs = []
|
33 |
+
for i, data in enumerate(dataloader):
|
34 |
+
# Get the input and target images.
|
35 |
+
viewdirs, radiances = data
|
36 |
+
viewdirs = viewdirs.to(device)
|
37 |
+
radiances = radiances.to(device)
|
38 |
+
|
39 |
+
# Forward pass.
|
40 |
+
outputs = nerf(viewdirs)
|
41 |
+
|
42 |
+
# Compute the PSNR.
|
43 |
+
psnrs.append(
|
44 |
+
torch.mean(
|
45 |
+
torch.nn.functional.psnr(outputs, radiances, data["intrinsics"])
|
46 |
+
)
|
47 |
+
)
|
48 |
+
|
49 |
+
return np.mean(psnrs)
|
50 |
+
|
51 |
+
|
52 |
+
def main():
|
53 |
+
# Create the dataset.
|
54 |
+
dataset = Dataset.from_json("data/nerf_synthetic_data.json")
|
55 |
+
dataloader = data.DataLoader(dataset, batch_size=1, shuffle=True)
|
56 |
+
|
57 |
+
# Create the NeRF model.
|
58 |
+
nerf = NeRF(32, 64, 8).to(device)
|
59 |
+
|
60 |
+
# Create the optimizer.
|
61 |
+
optimizer = optim.Adam(nerf.parameters(), lr=1e-3)
|
62 |
+
|
63 |
+
# Train the NeRF model.
|
64 |
+
for i in range(1000):
|
65 |
+
train(nerf, dataloader, optimizer, device)
|
66 |
+
|
67 |
+
# Print the loss and PSNR every 100 iterations.
|
68 |
+
if i % 100 == 0:
|
69 |
+
loss = test(nerf, dataloader, device)
|
70 |
+
print(f"Loss: {loss:.4f}")
|
71 |
+
|
72 |
+
# Save the NeRF model.
|
73 |
+
nerf.save("nerf.pth")
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|