Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Any, Callable, Dict, List, Optional, Union, Tuple | |
| import cv2 | |
| import PIL | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms | |
| from insightface.app import FaceAnalysis | |
| ### insight-face installation can be found at https://github.com/deepinsight/insightface | |
| from safetensors import safe_open | |
| from huggingface_hub.utils import validate_hf_hub_args | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from diffusers.utils import _get_model_file | |
| from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx | |
| from functions import ProjPlusModel, masks_for_unique_values | |
| from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder | |
| ### Model can be imported from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file | |
| ### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812 | |
| ### Thanks for the open source of face-parsing model. | |
| from models.BiSeNet.model import BiSeNet # resnet tensorflow | |
| import pdb | |
| ###################################### | |
| ########## add for sdxl | |
| ###################################### | |
| from diffusers import StableDiffusionXLPipeline | |
| from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
| ###################################### | |
| ########## add for llava | |
| ###################################### | |
| # import sys | |
| # sys.path.append("./Llava1.5/LLaVA") | |
| # from llava.model.builder import load_pretrained_model | |
| # from llava.mm_utils import get_model_name_from_path | |
| # from llava.eval.run_llava import eval_model | |
| PipelineImageInput = Union[ | |
| PIL.Image.Image, | |
| torch.FloatTensor, | |
| List[PIL.Image.Image], | |
| List[torch.FloatTensor], | |
| ] | |
| class ConsistentIDStableDiffusionXLPipeline(StableDiffusionXLPipeline): | |
| def cuda(self, dtype=torch.float16, use_xformers=False): | |
| self.to('cuda', dtype) | |
| # if hasattr(self, 'image_proj_model'): | |
| # self.image_proj_model.to(self.unet.device).to(self.unet.dtype) | |
| if use_xformers: | |
| if is_xformers_available(): | |
| import xformers | |
| from packaging import version | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warn( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| self.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| def load_ConsistentID_model( | |
| self, | |
| pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
| bise_net, | |
| weight_name: str, | |
| subfolder: str = '', | |
| trigger_word_ID: str = '<|image|>', | |
| trigger_word_facial: str = '<|facial|>', | |
| image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K', # Import CLIP pretrained model | |
| torch_dtype = torch.float16, | |
| num_tokens = 4, | |
| lora_rank= 128, | |
| **kwargs, | |
| ): | |
| self.lora_rank = lora_rank | |
| self.torch_dtype = torch_dtype | |
| self.num_tokens = num_tokens | |
| self.set_ip_adapter() | |
| self.image_encoder_path = image_encoder_path | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( | |
| self.device, dtype=self.torch_dtype | |
| ) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| self.id_image_processor = CLIPImageProcessor() | |
| self.crop_size = 512 | |
| # FaceID | |
| self.app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) ### root="/root/.insightface/models/buffalo_l" | |
| self.app.prepare(ctx_id=0, det_size=(512, 512)) ### (640, 640) | |
| ### BiSeNet | |
| # self.bise_net = BiSeNet(n_classes = 19) | |
| # self.bise_net.cuda() | |
| # self.bise_net_cp= bise_net_cp # Import BiSeNet model | |
| # self.bise_net.load_state_dict(torch.load(self.bise_net_cp)) # , map_location="cpu" | |
| self.bise_net = bise_net # load from outside | |
| self.bise_net.eval() | |
| # Colors for all 20 parts | |
| self.part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], | |
| [255, 0, 85], [255, 0, 170], | |
| [0, 255, 0], [85, 255, 0], [170, 255, 0], | |
| [0, 255, 85], [0, 255, 170], | |
| [0, 0, 255], [85, 0, 255], [170, 0, 255], | |
| [0, 85, 255], [0, 170, 255], | |
| [255, 255, 0], [255, 255, 85], [255, 255, 170], | |
| [255, 0, 255], [255, 85, 255], [255, 170, 255], | |
| [0, 255, 255], [85, 255, 255], [170, 255, 255]] | |
| ### LLVA Optional | |
| self.llva_model_path = "liuhaotian/llava-v1.5-13b" # import llava weights | |
| self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth." | |
| self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path) | |
| self.FacialEncoder = FacialEncoder(self.image_encoder, embedding_dim=1280, output_dim=2048, embed_dim=2048).to(self.device, dtype=self.torch_dtype) | |
| # Load the main state dict first. | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", None) | |
| token = kwargs.pop("token", None) | |
| revision = kwargs.pop("revision", None) | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| # resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| if weight_name.endswith(".safetensors"): | |
| state_dict = {"image_proj_model": {}, "adapter_modules": {}, "FacialEncoder": {}} | |
| with safe_open(model_file, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| if key.startswith("unet"): | |
| pass | |
| elif key.startswith("image_proj_model"): | |
| state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f.get_tensor(key) | |
| elif key.startswith("adapter_modules"): | |
| state_dict["adapter_modules"][key.replace("adapter_modules.", "")] = f.get_tensor(key) | |
| elif key.startswith("FacialEncoder"): | |
| state_dict["FacialEncoder"][key.replace("FacialEncoder.", "")] = f.get_tensor(key) | |
| else: | |
| state_dict = torch.load(model_file, map_location="cuda") | |
| else: | |
| state_dict = pretrained_model_name_or_path_or_dict | |
| self.trigger_word_ID = trigger_word_ID | |
| self.trigger_word_facial = trigger_word_facial | |
| self.image_proj_model = ProjPlusModel( | |
| cross_attention_dim=self.unet.config.cross_attention_dim, | |
| id_embeddings_dim=512, | |
| clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
| num_tokens=self.num_tokens, # 4 | |
| ).to(self.device, dtype=self.torch_dtype) | |
| self.image_proj_model.load_state_dict(state_dict["image_proj_model"], strict=True) | |
| ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values()) | |
| ip_layers.load_state_dict(state_dict["adapter_modules"], strict=True) | |
| self.FacialEncoder.load_state_dict(state_dict["FacialEncoder"], strict=True) | |
| print(f"Successfully loaded weights from checkpoint") | |
| # Add trigger word token | |
| if self.tokenizer is not None: | |
| self.tokenizer.add_tokens([self.trigger_word_ID], special_tokens=True) | |
| self.tokenizer.add_tokens([self.trigger_word_facial], special_tokens=True) | |
| ###################################### | |
| ########## add for sdxl | |
| ###################################### | |
| ### (1) load lora into models | |
| # print(f"Loading ConsistentID components lora_weights from [{pretrained_model_name_or_path_or_dict}]") | |
| # self.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker") | |
| ### (2) Add trigger word token for tokenizer_2 | |
| self.tokenizer_2.add_tokens([self.trigger_word_ID], special_tokens=True) | |
| def set_ip_adapter(self): | |
| unet = self.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = Consistent_AttProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank, | |
| ).to(self.device, dtype=self.torch_dtype) | |
| else: | |
| attn_procs[name] = Consistent_IPAttProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens, | |
| ).to(self.device, dtype=self.torch_dtype) | |
| unet.set_attn_processor(attn_procs) | |
| def get_facial_embeds(self, prompt_embeds, negative_prompt_embeds, facial_clip_images, facial_token_masks, valid_facial_token_idx_mask): | |
| hidden_states = [] | |
| uncond_hidden_states = [] | |
| for facial_clip_image in facial_clip_images: | |
| hidden_state = self.image_encoder(facial_clip_image.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2] | |
| uncond_hidden_state = self.image_encoder(torch.zeros_like(facial_clip_image, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2] | |
| hidden_states.append(hidden_state) | |
| uncond_hidden_states.append(uncond_hidden_state) | |
| multi_facial_embeds = torch.stack(hidden_states) | |
| uncond_multi_facial_embeds = torch.stack(uncond_hidden_states) | |
| # condition | |
| facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask) | |
| # uncondition | |
| uncond_facial_prompt_embeds = self.FacialEncoder(negative_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask) | |
| return facial_prompt_embeds, uncond_facial_prompt_embeds | |
| def get_image_embeds(self, faceid_embeds, face_image, s_scale=1.0, shortcut=False): | |
| clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values | |
| clip_image = clip_image.to(self.device, dtype=self.torch_dtype) | |
| clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
| uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2] | |
| faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
| image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
| uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
| return image_prompt_tokens, uncond_image_prompt_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, Consistent_IPAttProcessor): | |
| attn_processor.scale = scale | |
| def get_prepare_faceid(self, input_image_path=None): | |
| faceid_image = cv2.imread(input_image_path) | |
| face_info = self.app.get(faceid_image) | |
| if face_info==[]: | |
| faceid_embeds = torch.zeros_like(torch.empty((1, 512))) | |
| else: | |
| faceid_embeds = torch.from_numpy(face_info[0].normed_embedding).unsqueeze(0) | |
| # print(f"faceid_embeds is : {faceid_embeds}") | |
| return faceid_embeds | |
| def parsing_face_mask(self, raw_image_refer): | |
| to_tensor = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
| ]) | |
| to_pil = transforms.ToPILImage() | |
| with torch.no_grad(): | |
| ### change sdxl | |
| image = raw_image_refer.resize((1280, 1280), Image.BILINEAR) | |
| image_resize_PIL = image | |
| img = to_tensor(image) | |
| img = torch.unsqueeze(img, 0) | |
| img = img.float().cuda() | |
| out = self.bise_net(img)[0] | |
| parsing_anno = out.squeeze(0).cpu().numpy().argmax(0) | |
| im = np.array(image_resize_PIL) | |
| vis_im = im.copy().astype(np.uint8) | |
| stride=1 | |
| vis_parsing_anno = parsing_anno.copy().astype(np.uint8) | |
| vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) | |
| vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 | |
| num_of_class = np.max(vis_parsing_anno) | |
| for pi in range(1, num_of_class + 1): # num_of_class=17 pi=1~16 | |
| index = np.where(vis_parsing_anno == pi) | |
| vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi] | |
| vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) | |
| vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) | |
| return vis_parsing_anno_color, vis_parsing_anno | |
| def get_prepare_llva_caption(self, input_image_file, model_path=None, prompt=None): | |
| ### Optional: Use the LLaVA | |
| # args = type('Args', (), { | |
| # "model_path": self.llva_model_path, | |
| # "model_base": None, | |
| # "model_name": get_model_name_from_path(self.llva_model_path), | |
| # "query": self.llva_prompt, | |
| # "conv_mode": None, | |
| # "image_file": input_image_file, | |
| # "sep": ",", | |
| # "temperature": 0, | |
| # "top_p": None, | |
| # "num_beams": 1, | |
| # "max_new_tokens": 512 | |
| # })() | |
| # face_caption = eval_model(args, self.llva_tokenizer, self.llva_model, self.llva_image_processor) | |
| ### Use built-in template | |
| face_caption = "The person has one face, one nose, two eyes, two ears, and a mouth." | |
| return face_caption | |
| def get_prepare_facemask(self, input_image_file): | |
| vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file) | |
| parsing_mask_list = masks_for_unique_values(vis_parsing_anno) | |
| key_parsing_mask_list = {} | |
| key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"] | |
| processed_keys = set() | |
| for key, mask_image in parsing_mask_list.items(): | |
| if key in key_list: | |
| if "_" in key: | |
| prefix = key.split("_")[1] | |
| if prefix in processed_keys: | |
| continue | |
| else: | |
| key_parsing_mask_list[key] = mask_image | |
| processed_keys.add(prefix) | |
| key_parsing_mask_list[key] = mask_image | |
| return key_parsing_mask_list, vis_parsing_anno_color | |
| def encode_prompt_with_trigger_word( | |
| self, | |
| prompt: str, | |
| face_caption: str, | |
| key_parsing_mask_list = None, | |
| image_token = "<|image|>", | |
| facial_token = "<|facial|>", | |
| max_num_facials = 5, | |
| num_id_images: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| # pdb.set_trace() | |
| face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list) | |
| prompt_face = prompt + "; Detail:" + face_caption_align | |
| max_text_length=330 | |
| if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, padding="max_length",truncation=False,return_tensors="pt").input_ids[0])!=77: | |
| prompt_face = "; Detail:" + face_caption_align + " Caption:" + prompt | |
| if len(face_caption)>max_text_length: | |
| prompt_face = prompt | |
| face_caption_align = "" | |
| prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "") | |
| tokenizer = self.tokenizer | |
| facial_token_id = tokenizer.convert_tokens_to_ids(facial_token) | |
| image_token_id = None | |
| clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends( | |
| prompt_face, image_token_id, facial_token_id, tokenizer) | |
| image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx( | |
| image_token_mask, facial_token_mask, num_id_images, max_num_facials ) | |
| ###################################### | |
| ########## add for sdxl | |
| ###################################### | |
| tokenizer_2 = self.tokenizer_2 | |
| facial_token_id2 = tokenizer.convert_tokens_to_ids(facial_token) | |
| image_token_id2 = None | |
| clean_input_id2, image_token_mask2, facial_token_mask2 = tokenize_and_mask_noun_phrases_ends( | |
| prompt_face, image_token_id2, facial_token_id2, tokenizer_2) | |
| image_token_idx2, image_token_idx_mask2, facial_token_idx2, facial_token_idx_mask2 = prepare_image_token_idx( | |
| image_token_mask2, facial_token_mask2, num_id_images, max_num_facials ) | |
| return prompt_text_only, clean_input_id, clean_input_id2, key_parsing_mask_list_align, facial_token_mask, facial_token_idx, facial_token_idx_mask | |
| def get_prepare_clip_image(self, input_image_file, key_parsing_mask_list, image_size=512, max_num_facials=5, change_facial=True): | |
| facial_mask = [] | |
| facial_clip_image = [] | |
| transform_mask = transforms.Compose([transforms.CenterCrop(size=image_size), transforms.ToTensor(),]) | |
| clip_image_processor = CLIPImageProcessor() | |
| num_facial_part = len(key_parsing_mask_list) | |
| for key in key_parsing_mask_list: | |
| key_mask=key_parsing_mask_list[key] | |
| facial_mask.append(transform_mask(key_mask)) | |
| key_mask_raw_image = fetch_mask_raw_image(input_image_file,key_mask) | |
| parsing_clip_image = clip_image_processor(images=key_mask_raw_image, return_tensors="pt").pixel_values | |
| facial_clip_image.append(parsing_clip_image) | |
| padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224])) | |
| padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size])) | |
| if num_facial_part < max_num_facials: | |
| facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ] | |
| facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)] | |
| facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0) | |
| facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1) | |
| return facial_clip_image, facial_mask | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| face_caption: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| target_size: Optional[Tuple[int, int]] = None, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| input_id_images: PipelineImageInput = None, | |
| input_image_path: PipelineImageInput = None, | |
| start_merge_step: int = 0, | |
| class_tokens_mask: Optional[torch.LongTensor] = None, | |
| prompt_embeds_text_only: Optional[torch.FloatTensor] = None, | |
| ### add for sdxl | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds_text_only: Optional[torch.FloatTensor] = None, | |
| guidance_rescale: float = 7.5 | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 1. Check inputs. Raise error if not correct | |
| # self.check_inputs( | |
| # prompt, | |
| # height, | |
| # width, | |
| # callback_steps, | |
| # negative_prompt, | |
| # prompt_embeds, | |
| # negative_prompt_embeds, | |
| # ) | |
| if not isinstance(input_id_images, list): | |
| input_id_images = [input_id_images] | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale >= 1.0 | |
| input_image_file = input_id_images[0] | |
| faceid_embeds = self.get_prepare_faceid(input_image_path=input_image_path) | |
| face_caption = self.get_prepare_llva_caption(input_image_file=input_image_file) | |
| key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file) | |
| assert do_classifier_free_guidance | |
| # 3. Encode input prompt | |
| num_id_images = len(input_id_images) | |
| ( | |
| prompt_text_only, | |
| clean_input_id, | |
| clean_input_id2, ### add for sdxl | |
| key_parsing_mask_list_align, | |
| facial_token_mask, | |
| facial_token_idx, | |
| facial_token_idx_mask, | |
| ) = self.encode_prompt_with_trigger_word( | |
| prompt = prompt, | |
| face_caption = face_caption, | |
| key_parsing_mask_list=key_parsing_mask_list, | |
| device=device, | |
| max_num_facials = 5, | |
| num_id_images= num_id_images, | |
| ) | |
| # 4. Encode input prompt without the trigger word for delayed conditioning | |
| text_embeds = self.text_encoder(clean_input_id.to(device), output_hidden_states=True).hidden_states[-2] | |
| ###################################### | |
| ########## add for sdxl : add pooled_text_embeds | |
| ###################################### | |
| ### (4-1) | |
| encoder_output_2 = self.text_encoder_2(clean_input_id2.to(device), output_hidden_states=True) | |
| pooled_text_embeds = encoder_output_2[0] | |
| text_embeds_2 = encoder_output_2.hidden_states[-2] | |
| ### (4-2) | |
| encoder_hidden_states = torch.concat([text_embeds, text_embeds_2], dim=-1) # concat | |
| ### (4-3) | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_text_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| dtype=self.torch_dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) ### add_time_ids.Size([2, 6]) | |
| add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
| ###################################### | |
| ########## add for sdxl : add pooled_prompt_embeds | |
| ###################################### | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds_text_only, | |
| negative_pooled_prompt_embeds, | |
| )= self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds_text_only, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds_text_only, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 5. Prepare the input ID images | |
| prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=1.0, shortcut=True) | |
| facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=1280, max_num_facials=5) | |
| facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype) | |
| facial_token_mask = facial_token_mask.to(device) | |
| facial_token_idx_mask = facial_token_idx_mask.to(device) | |
| cross_attention_kwargs = {} | |
| # 6. Get the update text embedding | |
| prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_prompt_embeds, \ | |
| facial_clip_images, facial_token_mask, facial_token_idx_mask) | |
| ########## text_facial embeds | |
| prompt_embeds_facial = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1) | |
| negative_prompt_embeds_facial = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1) | |
| ########## text_only embeds | |
| prompt_embeds_text_only = torch.cat([prompt_embeds, prompt_tokens_faceid], dim=1) | |
| negative_prompt_embeds_text_only = torch.cat([negative_prompt_embeds, uncond_prompt_tokens_faceid], dim=1) | |
| # 7. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 8. Prepare latent variables | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 9. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| ###################################### | |
| ########## add for sdxl : add unet_added_cond_kwargs | |
| ###################################### | |
| if i <= start_merge_step: | |
| current_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds_text_only, prompt_embeds_text_only], dim=0 | |
| ) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_text_only], dim=0) | |
| else: | |
| current_prompt_embeds = torch.cat( | |
| [negative_prompt_embeds_facial, prompt_embeds_facial], dim=0 | |
| ) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_text_embeds], dim=0) | |
| unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=current_prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| added_cond_kwargs=unet_added_cond_kwargs, | |
| # return_dict=False, ### [0] | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| else: | |
| assert 0, "Not Implemented" | |
| # if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) ### TODO optimal noise and LCM | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs | |
| ).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| else: | |
| image = latents | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| # apply watermark if available | |
| # if self.watermark is not None: | |
| # image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |