Spaces:
Sleeping
Sleeping
Jainish1808
commited on
Commit
Β·
0541d4e
1
Parent(s):
c38fcf7
Upload main.py
Browse files
main.py
CHANGED
|
@@ -1,6 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import torch
|
|
|
|
| 4 |
from fastapi import FastAPI, Request, Form
|
| 5 |
from fastapi.templating import Jinja2Templates
|
| 6 |
from fastapi.responses import HTMLResponse
|
|
@@ -20,14 +297,6 @@ os.environ["HF_HOME"] = cache_dir
|
|
| 20 |
os.environ["TRANSFORMERS_CACHE"] = cache_dir
|
| 21 |
os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir
|
| 22 |
|
| 23 |
-
# FastAPI setup
|
| 24 |
-
app = FastAPI(title="Jack Patel AI Assistant", description="Personal AI Assistant powered by Fine-tuned TinyLlama")
|
| 25 |
-
templates = Jinja2Templates(directory="templates")
|
| 26 |
-
|
| 27 |
-
# Create static directory if it doesn't exist
|
| 28 |
-
os.makedirs("static", exist_ok=True)
|
| 29 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 30 |
-
|
| 31 |
# Global variables for model and tokenizer
|
| 32 |
model = None
|
| 33 |
tokenizer = None
|
|
@@ -64,7 +333,7 @@ def load_model_and_tokenizer():
|
|
| 64 |
try:
|
| 65 |
tokenizer = AutoTokenizer.from_pretrained(lora_model_path)
|
| 66 |
logger.info("β
Tokenizer loaded from LoRA model")
|
| 67 |
-
except:
|
| 68 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, cache_dir=cache_dir)
|
| 69 |
logger.info("β
Tokenizer loaded from base model")
|
| 70 |
else:
|
|
@@ -193,8 +462,6 @@ def generate_response(instruction: str) -> str:
|
|
| 193 |
logger.error(f"β Generation error: {e}")
|
| 194 |
return f"Sorry, I encountered an error while generating the response: {str(e)}"
|
| 195 |
|
| 196 |
-
# Load everything on startup
|
| 197 |
-
@app.on_event("startup")
|
| 198 |
async def startup_event():
|
| 199 |
"""Load model and data on startup"""
|
| 200 |
logger.info("π Starting up...")
|
|
@@ -202,7 +469,6 @@ async def startup_event():
|
|
| 202 |
load_model_and_tokenizer()
|
| 203 |
logger.info("β
Startup complete!")
|
| 204 |
|
| 205 |
-
@app.on_event("shutdown")
|
| 206 |
async def shutdown_event():
|
| 207 |
"""Cleanup on shutdown"""
|
| 208 |
global model, tokenizer
|
|
@@ -211,9 +477,32 @@ async def shutdown_event():
|
|
| 211 |
del model
|
| 212 |
if tokenizer is not None:
|
| 213 |
del tokenizer
|
| 214 |
-
|
|
|
|
| 215 |
logger.info("β
Shutdown complete!")
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
# Routes
|
| 218 |
@app.get("/", response_class=HTMLResponse)
|
| 219 |
async def read_index(request: Request):
|
|
@@ -255,6 +544,15 @@ async def api_generate(instruction: str):
|
|
| 255 |
response = generate_response(instruction)
|
| 256 |
return {"instruction": instruction, "response": response}
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
@app.get("/health")
|
| 259 |
async def health_check():
|
| 260 |
"""Health check endpoint"""
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# import json
|
| 3 |
+
# import torch
|
| 4 |
+
# from fastapi import FastAPI, Request, Form
|
| 5 |
+
# from fastapi.templating import Jinja2Templates
|
| 6 |
+
# from fastapi.responses import HTMLResponse
|
| 7 |
+
# from fastapi.staticfiles import StaticFiles
|
| 8 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
+
# from peft import PeftModel, PeftConfig
|
| 10 |
+
# import logging
|
| 11 |
+
|
| 12 |
+
# # Setup logging
|
| 13 |
+
# logging.basicConfig(level=logging.INFO)
|
| 14 |
+
# logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
# # Setup environment cache
|
| 17 |
+
# cache_dir = "/tmp/huggingface"
|
| 18 |
+
# os.makedirs(cache_dir, exist_ok=True)
|
| 19 |
+
# os.environ["HF_HOME"] = cache_dir
|
| 20 |
+
# os.environ["TRANSFORMERS_CACHE"] = cache_dir
|
| 21 |
+
# os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir
|
| 22 |
+
|
| 23 |
+
# # FastAPI setup
|
| 24 |
+
# app = FastAPI(title="Jack Patel AI Assistant", description="Personal AI Assistant powered by Fine-tuned TinyLlama")
|
| 25 |
+
# templates = Jinja2Templates(directory="templates")
|
| 26 |
+
|
| 27 |
+
# # Create static directory if it doesn't exist
|
| 28 |
+
# os.makedirs("static", exist_ok=True)
|
| 29 |
+
# app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 30 |
+
|
| 31 |
+
# # Global variables for model and tokenizer
|
| 32 |
+
# model = None
|
| 33 |
+
# tokenizer = None
|
| 34 |
+
# training_data = []
|
| 35 |
+
|
| 36 |
+
# def load_training_data():
|
| 37 |
+
# """Load training data from JSON file"""
|
| 38 |
+
# global training_data
|
| 39 |
+
# try:
|
| 40 |
+
# if os.path.exists("data.json"):
|
| 41 |
+
# with open("data.json", "r", encoding="utf-8") as f:
|
| 42 |
+
# training_data = json.load(f)
|
| 43 |
+
# logger.info(f"β
Loaded {len(training_data)} training examples")
|
| 44 |
+
# else:
|
| 45 |
+
# logger.warning("β οΈ data.json not found, using empty training data")
|
| 46 |
+
# training_data = []
|
| 47 |
+
# except Exception as e:
|
| 48 |
+
# logger.error(f"β Error loading training data: {e}")
|
| 49 |
+
# training_data = []
|
| 50 |
+
|
| 51 |
+
# def load_model_and_tokenizer():
|
| 52 |
+
# """Load the model and tokenizer"""
|
| 53 |
+
# global model, tokenizer
|
| 54 |
+
|
| 55 |
+
# try:
|
| 56 |
+
# # Model paths
|
| 57 |
+
# base_model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 58 |
+
# lora_model_path = "lora_model"
|
| 59 |
+
|
| 60 |
+
# logger.info("π Loading tokenizer...")
|
| 61 |
+
|
| 62 |
+
# # Try to load tokenizer from LoRA path first, then base model
|
| 63 |
+
# if os.path.exists(lora_model_path):
|
| 64 |
+
# try:
|
| 65 |
+
# tokenizer = AutoTokenizer.from_pretrained(lora_model_path)
|
| 66 |
+
# logger.info("β
Tokenizer loaded from LoRA model")
|
| 67 |
+
# except:
|
| 68 |
+
# tokenizer = AutoTokenizer.from_pretrained(base_model_name, cache_dir=cache_dir)
|
| 69 |
+
# logger.info("β
Tokenizer loaded from base model")
|
| 70 |
+
# else:
|
| 71 |
+
# tokenizer = AutoTokenizer.from_pretrained(base_model_name, cache_dir=cache_dir)
|
| 72 |
+
# logger.info("β
Tokenizer loaded from base model")
|
| 73 |
+
|
| 74 |
+
# # Set pad token
|
| 75 |
+
# if tokenizer.pad_token is None:
|
| 76 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
| 77 |
+
|
| 78 |
+
# logger.info("π Loading model...")
|
| 79 |
+
|
| 80 |
+
# # Load base model
|
| 81 |
+
# base_model = AutoModelForCausalLM.from_pretrained(
|
| 82 |
+
# base_model_name,
|
| 83 |
+
# device_map="auto",
|
| 84 |
+
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 85 |
+
# cache_dir=cache_dir,
|
| 86 |
+
# trust_remote_code=True
|
| 87 |
+
# )
|
| 88 |
+
|
| 89 |
+
# # Try to load and merge LoRA model if it exists
|
| 90 |
+
# if os.path.exists(lora_model_path) and os.path.exists(os.path.join(lora_model_path, "adapter_config.json")):
|
| 91 |
+
# try:
|
| 92 |
+
# logger.info("π Loading LoRA adapter...")
|
| 93 |
+
# peft_model = PeftModel.from_pretrained(base_model, lora_model_path)
|
| 94 |
+
# model = peft_model.merge_and_unload()
|
| 95 |
+
# logger.info("β
LoRA model loaded and merged successfully")
|
| 96 |
+
# except Exception as e:
|
| 97 |
+
# logger.warning(f"β οΈ Could not load LoRA model: {e}, using base model")
|
| 98 |
+
# model = base_model
|
| 99 |
+
# else:
|
| 100 |
+
# logger.info("βΉοΈ No LoRA model found, using base model")
|
| 101 |
+
# model = base_model
|
| 102 |
+
|
| 103 |
+
# model.eval()
|
| 104 |
+
# logger.info("β
Model loaded successfully")
|
| 105 |
+
|
| 106 |
+
# # Print device info
|
| 107 |
+
# device = next(model.parameters()).device
|
| 108 |
+
# logger.info(f"π₯οΈ Model running on: {device}")
|
| 109 |
+
|
| 110 |
+
# except Exception as e:
|
| 111 |
+
# logger.error(f"β Model loading error: {e}")
|
| 112 |
+
# raise
|
| 113 |
+
|
| 114 |
+
# def format_prompt(instruction: str) -> str:
|
| 115 |
+
# """Format the instruction as a proper prompt"""
|
| 116 |
+
# return f"""<|system|>
|
| 117 |
+
# You are Jack Patel's personal AI assistant. Answer questions about Jack Patel based on the information you've been trained on. Be friendly, helpful, and accurate.
|
| 118 |
+
|
| 119 |
+
# <|user|>
|
| 120 |
+
# {instruction}
|
| 121 |
+
|
| 122 |
+
# <|assistant|>
|
| 123 |
+
# """
|
| 124 |
+
|
| 125 |
+
# def find_similar_question(question: str) -> str:
|
| 126 |
+
# """Find similar question in training data and return answer"""
|
| 127 |
+
# question_lower = question.lower().strip()
|
| 128 |
+
|
| 129 |
+
# # Direct match
|
| 130 |
+
# for item in training_data:
|
| 131 |
+
# if item["question"].lower().strip() == question_lower:
|
| 132 |
+
# return item["answer"]
|
| 133 |
+
|
| 134 |
+
# # Partial match
|
| 135 |
+
# for item in training_data:
|
| 136 |
+
# if any(word in item["question"].lower() for word in question_lower.split() if len(word) > 2):
|
| 137 |
+
# return item["answer"]
|
| 138 |
+
|
| 139 |
+
# return None
|
| 140 |
+
|
| 141 |
+
# def generate_response(instruction: str) -> str:
|
| 142 |
+
# """Generate response from the model"""
|
| 143 |
+
# if model is None or tokenizer is None:
|
| 144 |
+
# return "Model not loaded. Please try again later."
|
| 145 |
+
|
| 146 |
+
# try:
|
| 147 |
+
# # First try to find answer in training data
|
| 148 |
+
# similar_answer = find_similar_question(instruction)
|
| 149 |
+
# if similar_answer:
|
| 150 |
+
# return similar_answer
|
| 151 |
+
|
| 152 |
+
# # If not found, use the model
|
| 153 |
+
# prompt = format_prompt(instruction)
|
| 154 |
+
|
| 155 |
+
# inputs = tokenizer(
|
| 156 |
+
# prompt,
|
| 157 |
+
# return_tensors="pt",
|
| 158 |
+
# truncation=True,
|
| 159 |
+
# max_length=512
|
| 160 |
+
# )
|
| 161 |
+
|
| 162 |
+
# # Move inputs to same device as model
|
| 163 |
+
# device = next(model.parameters()).device
|
| 164 |
+
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 165 |
+
|
| 166 |
+
# with torch.no_grad():
|
| 167 |
+
# outputs = model.generate(
|
| 168 |
+
# **inputs,
|
| 169 |
+
# max_new_tokens=150,
|
| 170 |
+
# temperature=0.7,
|
| 171 |
+
# top_p=0.9,
|
| 172 |
+
# do_sample=True,
|
| 173 |
+
# pad_token_id=tokenizer.eos_token_id,
|
| 174 |
+
# eos_token_id=tokenizer.eos_token_id,
|
| 175 |
+
# repetition_penalty=1.1
|
| 176 |
+
# )
|
| 177 |
+
|
| 178 |
+
# # Decode the response
|
| 179 |
+
# full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 180 |
+
|
| 181 |
+
# # Extract only the assistant's response
|
| 182 |
+
# if "<|assistant|>" in full_response:
|
| 183 |
+
# response = full_response.split("<|assistant|>")[-1].strip()
|
| 184 |
+
# else:
|
| 185 |
+
# response = full_response.replace(prompt, "").strip()
|
| 186 |
+
|
| 187 |
+
# # Clean up the response
|
| 188 |
+
# response = response.replace("<|user|>", "").replace("<|system|>", "").strip()
|
| 189 |
+
|
| 190 |
+
# return response if response else "I'm sorry, I couldn't generate a proper response. Please try asking differently."
|
| 191 |
+
|
| 192 |
+
# except Exception as e:
|
| 193 |
+
# logger.error(f"β Generation error: {e}")
|
| 194 |
+
# return f"Sorry, I encountered an error while generating the response: {str(e)}"
|
| 195 |
+
|
| 196 |
+
# # Load everything on startup
|
| 197 |
+
# @app.on_event("startup")
|
| 198 |
+
# async def startup_event():
|
| 199 |
+
# """Load model and data on startup"""
|
| 200 |
+
# logger.info("π Starting up...")
|
| 201 |
+
# load_training_data()
|
| 202 |
+
# load_model_and_tokenizer()
|
| 203 |
+
# logger.info("β
Startup complete!")
|
| 204 |
+
|
| 205 |
+
# @app.on_event("shutdown")
|
| 206 |
+
# async def shutdown_event():
|
| 207 |
+
# """Cleanup on shutdown"""
|
| 208 |
+
# global model, tokenizer
|
| 209 |
+
# logger.info("π Shutting down...")
|
| 210 |
+
# if model is not None:
|
| 211 |
+
# del model
|
| 212 |
+
# if tokenizer is not None:
|
| 213 |
+
# del tokenizer
|
| 214 |
+
# torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 215 |
+
# logger.info("β
Shutdown complete!")
|
| 216 |
+
|
| 217 |
+
# # Routes
|
| 218 |
+
# @app.get("/", response_class=HTMLResponse)
|
| 219 |
+
# async def read_index(request: Request):
|
| 220 |
+
# """Homepage"""
|
| 221 |
+
# return templates.TemplateResponse("index.html", {
|
| 222 |
+
# "request": request,
|
| 223 |
+
# "result": "",
|
| 224 |
+
# "instruction": "",
|
| 225 |
+
# "data_count": len(training_data)
|
| 226 |
+
# })
|
| 227 |
+
|
| 228 |
+
# @app.post("/", response_class=HTMLResponse)
|
| 229 |
+
# async def generate_output(request: Request, instruction: str = Form(...)):
|
| 230 |
+
# """Generate response for user input"""
|
| 231 |
+
# if not instruction.strip():
|
| 232 |
+
# return templates.TemplateResponse("index.html", {
|
| 233 |
+
# "request": request,
|
| 234 |
+
# "result": "Please enter a question or instruction.",
|
| 235 |
+
# "instruction": instruction,
|
| 236 |
+
# "data_count": len(training_data)
|
| 237 |
+
# })
|
| 238 |
+
|
| 239 |
+
# logger.info(f"π€ Generating response for: {instruction}")
|
| 240 |
+
# response = generate_response(instruction)
|
| 241 |
+
|
| 242 |
+
# return templates.TemplateResponse("index.html", {
|
| 243 |
+
# "request": request,
|
| 244 |
+
# "result": response,
|
| 245 |
+
# "instruction": instruction,
|
| 246 |
+
# "data_count": len(training_data)
|
| 247 |
+
# })
|
| 248 |
+
|
| 249 |
+
# @app.get("/api/generate")
|
| 250 |
+
# async def api_generate(instruction: str):
|
| 251 |
+
# """API endpoint for generating responses"""
|
| 252 |
+
# if not instruction.strip():
|
| 253 |
+
# return {"error": "Please provide an instruction"}
|
| 254 |
+
|
| 255 |
+
# response = generate_response(instruction)
|
| 256 |
+
# return {"instruction": instruction, "response": response}
|
| 257 |
+
|
| 258 |
+
# @app.get("/health")
|
| 259 |
+
# async def health_check():
|
| 260 |
+
# """Health check endpoint"""
|
| 261 |
+
# return {
|
| 262 |
+
# "status": "healthy",
|
| 263 |
+
# "model_loaded": model is not None,
|
| 264 |
+
# "tokenizer_loaded": tokenizer is not None,
|
| 265 |
+
# "training_data_count": len(training_data),
|
| 266 |
+
# "device": str(next(model.parameters()).device) if model else "unknown"
|
| 267 |
+
# }
|
| 268 |
+
|
| 269 |
+
# if __name__ == "__main__":
|
| 270 |
+
# import uvicorn
|
| 271 |
+
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
import os
|
| 278 |
import json
|
| 279 |
import torch
|
| 280 |
+
from contextlib import asynccontextmanager
|
| 281 |
from fastapi import FastAPI, Request, Form
|
| 282 |
from fastapi.templating import Jinja2Templates
|
| 283 |
from fastapi.responses import HTMLResponse
|
|
|
|
| 297 |
os.environ["TRANSFORMERS_CACHE"] = cache_dir
|
| 298 |
os.environ["HUGGINGFACE_HUB_CACHE"] = cache_dir
|
| 299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
# Global variables for model and tokenizer
|
| 301 |
model = None
|
| 302 |
tokenizer = None
|
|
|
|
| 333 |
try:
|
| 334 |
tokenizer = AutoTokenizer.from_pretrained(lora_model_path)
|
| 335 |
logger.info("β
Tokenizer loaded from LoRA model")
|
| 336 |
+
except Exception:
|
| 337 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name, cache_dir=cache_dir)
|
| 338 |
logger.info("β
Tokenizer loaded from base model")
|
| 339 |
else:
|
|
|
|
| 462 |
logger.error(f"β Generation error: {e}")
|
| 463 |
return f"Sorry, I encountered an error while generating the response: {str(e)}"
|
| 464 |
|
|
|
|
|
|
|
| 465 |
async def startup_event():
|
| 466 |
"""Load model and data on startup"""
|
| 467 |
logger.info("π Starting up...")
|
|
|
|
| 469 |
load_model_and_tokenizer()
|
| 470 |
logger.info("β
Startup complete!")
|
| 471 |
|
|
|
|
| 472 |
async def shutdown_event():
|
| 473 |
"""Cleanup on shutdown"""
|
| 474 |
global model, tokenizer
|
|
|
|
| 477 |
del model
|
| 478 |
if tokenizer is not None:
|
| 479 |
del tokenizer
|
| 480 |
+
if torch.cuda.is_available():
|
| 481 |
+
torch.cuda.empty_cache()
|
| 482 |
logger.info("β
Shutdown complete!")
|
| 483 |
|
| 484 |
+
# Modern lifespan event handler
|
| 485 |
+
@asynccontextmanager
|
| 486 |
+
async def lifespan(app: FastAPI):
|
| 487 |
+
# Startup
|
| 488 |
+
await startup_event()
|
| 489 |
+
yield
|
| 490 |
+
# Shutdown
|
| 491 |
+
await shutdown_event()
|
| 492 |
+
|
| 493 |
+
# FastAPI setup with lifespan
|
| 494 |
+
app = FastAPI(
|
| 495 |
+
title="Jack Patel AI Assistant",
|
| 496 |
+
description="Personal AI Assistant powered by Fine-tuned TinyLlama",
|
| 497 |
+
lifespan=lifespan
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
templates = Jinja2Templates(directory="templates")
|
| 501 |
+
|
| 502 |
+
# Create static directory if it doesn't exist
|
| 503 |
+
os.makedirs("static", exist_ok=True)
|
| 504 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 505 |
+
|
| 506 |
# Routes
|
| 507 |
@app.get("/", response_class=HTMLResponse)
|
| 508 |
async def read_index(request: Request):
|
|
|
|
| 544 |
response = generate_response(instruction)
|
| 545 |
return {"instruction": instruction, "response": response}
|
| 546 |
|
| 547 |
+
@app.get("/api/questions")
|
| 548 |
+
async def get_questions():
|
| 549 |
+
"""API endpoint to get available questions"""
|
| 550 |
+
return {
|
| 551 |
+
"questions": [item["question"] for item in training_data[:10]], # First 10 questions
|
| 552 |
+
"total_count": len(training_data),
|
| 553 |
+
"status": "available"
|
| 554 |
+
}
|
| 555 |
+
|
| 556 |
@app.get("/health")
|
| 557 |
async def health_check():
|
| 558 |
"""Health check endpoint"""
|