Spaces:
Runtime error
Runtime error
File size: 7,733 Bytes
6de6e27 7dbe05a 5fb1207 6de6e27 7dbe05a 5fb1207 7dbe05a 5fb1207 7dbe05a 5fb1207 7dbe05a 5fb1207 7dbe05a 5fb1207 7dbe05a 6de6e27 5fb1207 7dbe05a 6de6e27 7dbe05a 27a2265 7dbe05a 6de6e27 7dbe05a 6de6e27 7dbe05a 3ae4f0b 6de6e27 7dbe05a 6de6e27 7dbe05a 6de6e27 7dbe05a 6de6e27 7dbe05a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# writefile facility_predict.py
import os
import random
import json
import numpy as np
import torch
import heapq
import pandas as pd
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from torch.utils.data import TensorDataset, DataLoader
class Preprocess:
def __init__(self, tokenizer_vocab_path, tokenizer_max_len):
self.stopwords = ["i", "was", "transferred",
"from", "to", "nilienda", "kituo",
"cha", "lakini", "saa", "hii", "niko",
"at", "nilienda", "nikahudumiwa", "pole",
"deliver", "na", "ni", "baada", "ya",
"kutumwa", "kutoka", "nilienda",
"ndipo", "nikapewa", "hiyo", "lindam ama", "nikawa",
"mgonjwa", "nikatibiwa", "in", "had", "a",
"visit", "gynaecologist", "ndio",
"karibu", "mimi", "niko", "sehemu", "hospitali",
"serikali", "delivered", "katika", "kaunti", "kujifungua",
"katika", "huko", "nilipoenda", "kwa", "bado", "naedelea",
"sija", "maliza", "mwisho",
"nilianza", "kliniki", "yangu",
"nilianzia", "nilijifungua"]
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_vocab_path,
use_auth_token='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')
self.max_len = tokenizer_max_len
def clean_text(self, text):
text = text.lower()
self.text_single = ' '.join(word for word in text.split() if word not in self.stopwords)
return self.text_single
def encode_fn(self):
"""
Using tokenizer to preprocess the text
example of text_single:'Nairobi Hospital'
"""
tokenizer = self.tokenizer(self.text_single,
padding=True,
truncation=True,
max_length=self.max_len,
return_tensors='pt'
)
input_ids = tokenizer['input_ids']
attention_mask = tokenizer['attention_mask']
return input_ids, attention_mask
def process_tokenizer(self, data):
"""
Preprocess text and prepare dataloader for a single new sentence
"""
self.clean_text(data)
input_ids, attention_mask = self.encode_fn()
data = TensorDataset(input_ids, attention_mask)
return data
class Facility_Model:
def __init__(self, facility_model_path: any,
max_len: int):
self.max_len = max_len
self.softmax = torch.nn.Softmax(dim=1)
self.gpu = False
self.model = AutoModelForSequenceClassification.from_pretrained(facility_model_path,
use_auth_token='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')
self.model.eval() # set pytorch model for inference mode
if torch.cuda.device_count() > 1:
self.model = torch.nn.DataParallel(self.model)
if self.gpu:
seed = 42
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
self.device = torch.device('cuda')
else:
self.device = 'cpu'
self.model = self.model.to(self.device)
def predict_single(self, model, pred_data):
"""
Model inference for new single sentence
"""
pred_dataloader = DataLoader(pred_data, batch_size=10, shuffle=False)
for i, batch in enumerate(pred_dataloader):
with torch.no_grad():
outputs = model(input_ids=batch[0].to(self.device),
attention_mask=batch[1].to(self.device)
)
loss, logits = outputs.loss, outputs.logits
probability = self.softmax(logits)
probability_list = probability.detach().cpu().numpy()
return probability_list
def output_intent_probability(self, pred: any) -> dict:
"""
convert the model output into a dictionary with all intents and its probability
"""
output_dict = {}
# transform the relation table(between label and intent)
path_table = pd.read_csv('dhis_label_relation_14357.csv')
label_intent_dict = path_table[["label", "corresponding_label"]].set_index("corresponding_label").to_dict()[
'label']
# transform the output into dictionary(between intent and probability)
for intent in range(pred.shape[1]):
output_dict[label_intent_dict[intent]] = pred[0][intent]
return output_dict
def inference(self, prepared_data):
"""
Make predictions on one new sentence and output a JSON format variable
"""
temp = []
prob_distribution = self.predict_single(self.model, prepared_data)
prediction_results = self.output_intent_probability(prob_distribution.astype(float))
# Filter out predictions containing "dental" or "optical" keywords
filtered_results = {intent: prob for intent, prob in prediction_results.items()
if
"dental" not in intent.lower() and "optical" not in intent.lower() and "eye" not in intent.lower()}
sorted_pred_intent_results = sorted(filtered_results.items(), key=lambda x: x[1], reverse=True)
sorted_pred_intent_results_dict = dict(sorted_pred_intent_results)
# Return the top result
top_results = dict(list(sorted_pred_intent_results)[:1])
# temp.append(top_results)
# final_preds = json.dumps(temp)
final_preds = ', '.join(top_results.keys())
final_preds = final_preds.replace("'", "")
return final_preds
jacaranda_hugging_face_model = "Jacaranda/dhis_14000_600k_Test_Model"
obj_Facility_Model = Facility_Model(facility_model_path=jacaranda_hugging_face_model,
max_len=128
)
processor = Preprocess(tokenizer_vocab_path=jacaranda_hugging_face_model,
tokenizer_max_len=128
)
def predict_batch_from_csv(input_file, output_file):
# Load batch data from CSV
batch_data = pd.read_csv(input_file)
# Initialize predictions list
predictions = []
# Iterate over rows with tqdm for progress tracking
# Iterate over rows with tqdm for progress tracking
for _, row in tqdm(batch_data.iterrows(), total=len(batch_data)):
text = row['facility_name'] # Replace 'facility_name' with the actual column name containing the text data
if pd.isnull(text):
cleaned_text = ""
else:
cleaned_text = processor.clean_text(text)
prepared_data = processor.process_tokenizer(cleaned_text)
if cleaned_text == "":
prediction = "" # Set prediction as empty string
else:
prediction = obj_Facility_Model.inference(prepared_data)
predictions.append(prediction)
# Create DataFrame for predictions
output_data = pd.DataFrame({'prediction': predictions})
# Merge with input DataFrame
pred_output_df = pd.concat([batch_data.reset_index(drop=True), output_data], axis=1)
# Save predictions to CSV
pred_output_df.to_csv(output_file, index=False) |