MyIVR / app.py
JabriA's picture
Add Darija transcription and topic extraction app8
021133b
import gradio as gr
import torch
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, pipeline
from transformers import BertTokenizer, BertForSequenceClassification
import librosa
# Load models
# Transcription model for Moroccan Darija
processor = Wav2Vec2Processor.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
transcription_model = Wav2Vec2ForCTC.from_pretrained("boumehdi/wav2vec2-large-xlsr-moroccan-darija")
# Summarization model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Topic Classification Model (BERT for example)
topic_model = BertForSequenceClassification.from_pretrained("bert-base-uncased") # Example model
topic_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Function to resample audio to 16kHz if necessary
def resample_audio(audio_path, target_sr=16000):
audio_input, original_sr = librosa.load(audio_path, sr=None) # Load audio with original sampling rate
if original_sr != target_sr:
audio_input = librosa.resample(audio_input, orig_sr=original_sr, target_sr=target_sr) # Resample to 16kHz
return audio_input, target_sr
# Function to transcribe audio using Wav2Vec2
def transcribe_audio(audio_path):
# Load and preprocess audio
audio_input, sample_rate = resample_audio(audio_path)
inputs = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt", padding=True)
# Get predictions
with torch.no_grad():
logits = transcription_model(**inputs).logits
# Decode predictions
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription
# Function to classify the transcription into topics
def classify_topic(transcription):
# Tokenize the transcription and pass it through the BERT classifier
inputs = topic_tokenizer(transcription, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = topic_model(**inputs)
# Get the predicted label (0 for Customer Service, 1 for Retention Service, etc.)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
# Map prediction to a topic
if predicted_class == 0:
return "Customer Service"
elif predicted_class == 1:
return "Retention Service"
else:
return "Other"
# Function to transcribe, summarize, and classify topic
def transcribe_and_summarize(audio_file):
# Transcription
transcription = transcribe_audio(audio_file)
# Summarization
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
# Topic classification
topic = classify_topic(transcription)
return transcription, summary, topic
# Gradio Interface
inputs = gr.Audio(type="filepath", label="Upload your audio file")
outputs = [
gr.Textbox(label="Transcription"),
gr.Textbox(label="Summary"),
gr.Textbox(label="Topic")
]
app = gr.Interface(
fn=transcribe_and_summarize,
inputs=inputs,
outputs=outputs,
title="Moroccan Darija Audio Transcription, Summarization, and Topic Classification (JABRI)",
description="Upload an audio file in Moroccan Darija to get its transcription, a summarized version of the content, and the detected topic."
)
# Launch the app
if __name__ == "__main__":
app.launch()