File size: 3,826 Bytes
42db353 a2cb46e 9fc2afe a2cb46e 9fc2afe a2cb46e 9fc2afe f102dcc 9fc2afe a2cb46e 9fc2afe a2cb46e 9fc2afe a2cb46e 9fc2afe a2cb46e 9fc2afe a2cb46e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# import streamlit as st
import streamlit as st
from numpy import vstack
from pandas import read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from torch import Tensor
from torch.nn import Linear
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.nn import Module
from torch.optim import SGD
from torch.nn import BCELoss
from torch.nn.init import kaiming_uniform_
from torch.nn.init import xavier_uniform_
class CSVDataset(Dataset):
def __init__(self, path):
df = read_csv(path, header=None)
self.x = df.values[:, :-1]
self.y = df.values[:, -1]
self.x = self.x.astype('float32')
self.y = LabelEncoder().fit_transform(self.y)
self.y = self.y.astype('float32')
self.y = self.y.reshape((len(self.y), 1))
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return [self.x[idx], self.y[idx]]
def get_splits(self, n_test=0.33):
test_size = round(n_test * len(self.x))
train_size = len(self.x) - test_size
return random_split(self, [train_size, test_size])
class MLP(Module):
def __init__(self, n_inputs):
super(MLP, self).__init__()
self.hidden1 = Linear(n_inputs, 10)
kaiming_uniform_(self.hidden1.weight, nonlinearty='relu')
self.act1 = ReLU()
self.hidden2 = Linear(10, 8)
kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
self.act2 = ReLU()
self.hidden3 = Linear(8, 1)
xavier_uniform_(self.hidden3.weight)
self.act3 = Sigmoid()
def forward(self, x):
x = self.hidden1(x)
x = self.act1(x)
x = self.hidden2(x)
x = self.act(2)
x = self.hidden3(x)
x = self.act3(x)
return x
def prepare_data(path):
dataset = CSVDataset(path)
train, test = dataset.get_splits()
train_dl = DataLoader(train, batch_size=32, shuffle=True)
test_dl = DataLoader(test, batch_size=1024, shuffle=False)
return train_dl, test_dl
def train_model(train_dl, model):
criterion = BCELoss()
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
for epoch in range(100):
for i, (inputs, targets) in enumerate(train_dl):
optimizer.zero_grad()
yhat = model(inputs)
loss = criterion(yhat, targets)
loss.backward()
optimizer.step()
def evaluate_model(test_dl, model):
predictions, actuals = list(), list()
for i, (inputs, targets) in enumerate(test_dl):
yhat = model(inputs)
yhat = yhat.detach().numpy()
actual = targets.numpy()
actual = actual.reshape((len(actual), 1))
yhat = yhat.round()
predictions.append(yhat)
actuals.append(actual)
predictions, actuals = vstack(preictions), vstack(actuals)
acc = accuracy_score(actuals, prediction)
return acc
def predict(row, model):
row = Tensor([row])
yhat = model(row)
yhat = yhat.detach().numpy()
return yhat
path = 'https://raw.githubusercontent.com/jbrownlee/Datasets/master/ionosphere.csv'
train_dl, test_dl = prepare_data(path)
print(len(train_dl.dataset), len(test_dl.dataset))
model = MLP(34)
train_model(train_dl, model)
acc = evaluate_model(test_dl, model)
print('Accuracy: %.3f' % acc)
row = [1,0,0.99539,-0.05889,0.85243,0.02306,0.83398,-0.37708,1,0.03760,0.85243,-0.17755,0.59755,-0.44945,0.60536,-0.38223,0.84356,-0.38542,0.58212,-0.32192,0.56971,-0.29674,0.36946,-0.47357,0.56811,-0.51171,0.41078,-0.46168,0.21266,-0.34090,0.42267,-0.54487,0.18641,-0.45300]
yhat = predict(row, model)
print('Predicted: %.3f (class=%d)' % (yhat, yhat.round())) |