Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,18 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
-
import openai
|
6 |
-
import random
|
7 |
-
import re
|
8 |
import requests
|
9 |
import warnings
|
10 |
-
from transformers import logging
|
11 |
import os
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #
|
16 |
-
tf.get_logger().setLevel('ERROR')
|
17 |
-
|
18 |
-
# Suppress Python warnings
|
19 |
warnings.filterwarnings("ignore", category=FutureWarning) # Suppress FutureWarnings
|
20 |
warnings.filterwarnings("ignore", category=UserWarning) # Suppress UserWarnings
|
21 |
-
warnings.filterwarnings("ignore") # Suppress all warnings (optional)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
# GPT-powered sentence segmentation function
|
26 |
def segment_into_sentences_groq(passage):
|
27 |
headers = {
|
@@ -32,128 +24,113 @@ def segment_into_sentences_groq(passage):
|
|
32 |
"model": "llama3-8b-8192",
|
33 |
"messages": [
|
34 |
{
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
{
|
39 |
"role": "user",
|
40 |
-
"content": f"
|
41 |
}
|
42 |
],
|
43 |
-
"temperature":
|
44 |
-
"max_tokens":
|
45 |
}
|
46 |
-
|
47 |
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
|
48 |
-
print("response recieved")
|
49 |
if response.status_code == 200:
|
50 |
-
data = response.json()
|
51 |
try:
|
52 |
-
segmented_text =
|
53 |
-
print("SOP segmented")
|
54 |
-
# Split sentences based on the custom token
|
55 |
sentences = segmented_text.split("1!2@3#")
|
56 |
return [sentence.strip() for sentence in sentences if sentence.strip()]
|
57 |
-
except (
|
58 |
raise ValueError("Unexpected response structure from Groq API.")
|
59 |
else:
|
60 |
raise ValueError(f"Groq API error: {response.text}")
|
61 |
|
62 |
|
63 |
-
|
64 |
class TextEnhancer:
|
65 |
def __init__(self):
|
66 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
67 |
|
68 |
-
#
|
|
|
|
|
|
|
69 |
self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
70 |
self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
|
71 |
-
|
72 |
-
# Initialize grammar correction
|
73 |
self.grammar_pipeline = pipeline(
|
74 |
"text2text-generation",
|
75 |
model="Grammarly/coedit-large",
|
76 |
device=0 if self.device == "cuda" else -1
|
77 |
)
|
78 |
-
|
79 |
-
# Initialize semantic similarity model
|
80 |
self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)
|
81 |
-
print("sementics model loaded")
|
82 |
|
83 |
-
def enhance_text(self, text, min_similarity=0.8
|
84 |
-
# Use GPT for sentence segmentation
|
85 |
sentences = segment_into_sentences_groq(text)
|
86 |
|
87 |
-
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
valid_paraphrases = [
|
120 |
-
para for para, sim in zip(paraphrases, similarities[0])
|
121 |
-
if sim >= min_similarity
|
122 |
-
]
|
123 |
-
|
124 |
-
if valid_paraphrases:
|
125 |
-
corrected = self.grammar_pipeline(
|
126 |
-
valid_paraphrases[0],
|
127 |
-
max_length=150,
|
128 |
-
num_return_sequences=1
|
129 |
-
)[0]["generated_text"]
|
130 |
-
|
131 |
-
corrected = self._humanize_text(corrected)
|
132 |
-
enhanced_sentences.append(corrected)
|
133 |
-
else:
|
134 |
-
enhanced_sentences.append(sentence)
|
135 |
-
print(sentence)
|
136 |
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
def _humanize_text(self, text):
|
141 |
-
|
142 |
-
|
143 |
-
"""
|
144 |
-
# Randomly replace contractions in some sentences
|
145 |
-
contractions = {"can't": "cannot", "won't": "will not", "I'm": "I am", "it's": "it is"}
|
146 |
words = text.split()
|
147 |
text = " ".join([contractions.get(word, word) if random.random() > 0.9 else word for word in words])
|
148 |
|
149 |
-
# Add optional comma variations for natural breaks
|
150 |
if random.random() > 0.7:
|
151 |
text = text.replace(" and ", ", and ")
|
152 |
-
|
153 |
-
# Minor variations in sentence structure
|
154 |
-
if random.random() > 0.5:
|
155 |
-
text = text.replace(" is ", " happens to be ")
|
156 |
-
|
157 |
return text
|
158 |
|
159 |
|
@@ -162,12 +139,7 @@ def create_interface():
|
|
162 |
|
163 |
def process_text(text, similarity_threshold):
|
164 |
try:
|
165 |
-
|
166 |
-
text,
|
167 |
-
min_similarity=similarity_threshold / 100
|
168 |
-
)
|
169 |
-
print("grammar enhanced")
|
170 |
-
return enhanced
|
171 |
except Exception as e:
|
172 |
return f"Error: {str(e)}"
|
173 |
|
@@ -188,9 +160,8 @@ def create_interface():
|
|
188 |
],
|
189 |
outputs=gr.Textbox(label="Enhanced Text", lines=10),
|
190 |
title="Text Enhancement System",
|
191 |
-
description="Improve text quality while preserving original meaning"
|
192 |
)
|
193 |
-
|
194 |
return interface
|
195 |
|
196 |
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
|
4 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
5 |
import requests
|
6 |
import warnings
|
|
|
7 |
import os
|
8 |
+
from concurrent.futures import ThreadPoolExecutor
|
9 |
|
10 |
+
# Set environment variables and suppress warnings
|
11 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Reduce TensorFlow verbosity
|
|
|
|
|
|
|
12 |
warnings.filterwarnings("ignore", category=FutureWarning) # Suppress FutureWarnings
|
13 |
warnings.filterwarnings("ignore", category=UserWarning) # Suppress UserWarnings
|
|
|
14 |
|
15 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
16 |
+
|
17 |
# GPT-powered sentence segmentation function
|
18 |
def segment_into_sentences_groq(passage):
|
19 |
headers = {
|
|
|
24 |
"model": "llama3-8b-8192",
|
25 |
"messages": [
|
26 |
{
|
27 |
+
"role": "system",
|
28 |
+
"content": "you are to segment the sentence by adding '1!2@3#' at the end of each sentence. Return only the segmented sentences, nothing else."
|
29 |
+
},
|
30 |
{
|
31 |
"role": "user",
|
32 |
+
"content": f"Segment this passage into sentences with '1!2@3#' as a delimiter: {passage}"
|
33 |
}
|
34 |
],
|
35 |
+
"temperature": 0.7,
|
36 |
+
"max_tokens": 1024
|
37 |
}
|
38 |
+
|
39 |
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
|
|
|
40 |
if response.status_code == 200:
|
|
|
41 |
try:
|
42 |
+
segmented_text = response.json()["choices"][0]["message"]["content"]
|
|
|
|
|
43 |
sentences = segmented_text.split("1!2@3#")
|
44 |
return [sentence.strip() for sentence in sentences if sentence.strip()]
|
45 |
+
except (KeyError, IndexError):
|
46 |
raise ValueError("Unexpected response structure from Groq API.")
|
47 |
else:
|
48 |
raise ValueError(f"Groq API error: {response.text}")
|
49 |
|
50 |
|
|
|
51 |
class TextEnhancer:
|
52 |
def __init__(self):
|
53 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
self.executor = ThreadPoolExecutor(max_workers=3) # Parallel processing pool
|
55 |
|
56 |
+
# Load models
|
57 |
+
self._load_models()
|
58 |
+
|
59 |
+
def _load_models(self):
|
60 |
self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
61 |
self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
|
62 |
+
|
|
|
63 |
self.grammar_pipeline = pipeline(
|
64 |
"text2text-generation",
|
65 |
model="Grammarly/coedit-large",
|
66 |
device=0 if self.device == "cuda" else -1
|
67 |
)
|
68 |
+
|
|
|
69 |
self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)
|
|
|
70 |
|
71 |
+
def enhance_text(self, text, min_similarity=0.8):
|
|
|
72 |
sentences = segment_into_sentences_groq(text)
|
73 |
|
74 |
+
# Process sentences in parallel
|
75 |
+
results = list(self.executor.map(lambda s: self._process_sentence(s, min_similarity), sentences))
|
76 |
|
77 |
+
# Join enhanced sentences into a single text
|
78 |
+
enhanced_text = ". ".join(results).strip() + "."
|
79 |
+
return enhanced_text
|
80 |
+
|
81 |
+
def _process_sentence(self, sentence, min_similarity):
|
82 |
+
if not sentence.strip():
|
83 |
+
return sentence
|
84 |
+
|
85 |
+
# Generate paraphrases
|
86 |
+
inputs = self.paraphrase_tokenizer(
|
87 |
+
f"paraphrase: {sentence}",
|
88 |
+
return_tensors="pt",
|
89 |
+
padding=True,
|
90 |
+
max_length=150,
|
91 |
+
truncation=True
|
92 |
+
).to(self.device)
|
93 |
|
94 |
+
outputs = self.paraphrase_model.generate(
|
95 |
+
**inputs,
|
96 |
+
max_length=len(sentence.split()) + 20,
|
97 |
+
num_return_sequences=3,
|
98 |
+
num_beams=3,
|
99 |
+
temperature=0.7
|
100 |
+
)
|
101 |
|
102 |
+
paraphrases = [
|
103 |
+
self.paraphrase_tokenizer.decode(output, skip_special_tokens=True)
|
104 |
+
for output in outputs
|
105 |
+
]
|
106 |
+
|
107 |
+
# Calculate semantic similarity
|
108 |
+
sentence_embedding = self.similarity_model.encode(sentence, convert_to_tensor=True)
|
109 |
+
paraphrase_embeddings = self.similarity_model.encode(paraphrases, convert_to_tensor=True)
|
110 |
+
similarities = util.cos_sim(sentence_embedding, paraphrase_embeddings).squeeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# Filter paraphrases by similarity
|
113 |
+
valid_paraphrases = [
|
114 |
+
para for para, sim in zip(paraphrases, similarities)
|
115 |
+
if sim >= min_similarity
|
116 |
+
]
|
117 |
+
|
118 |
+
# Grammar correction for the most similar paraphrase
|
119 |
+
if valid_paraphrases:
|
120 |
+
corrected = self.grammar_pipeline(valid_paraphrases[0])[0]["generated_text"]
|
121 |
+
return self._humanize_text(corrected)
|
122 |
+
else:
|
123 |
+
return sentence
|
124 |
|
125 |
def _humanize_text(self, text):
|
126 |
+
# Introduce minor variations to mimic human-written text
|
127 |
+
import random
|
128 |
+
contractions = {"can't": "cannot", "won't": "will not", "it's": "it is"}
|
|
|
|
|
129 |
words = text.split()
|
130 |
text = " ".join([contractions.get(word, word) if random.random() > 0.9 else word for word in words])
|
131 |
|
|
|
132 |
if random.random() > 0.7:
|
133 |
text = text.replace(" and ", ", and ")
|
|
|
|
|
|
|
|
|
|
|
134 |
return text
|
135 |
|
136 |
|
|
|
139 |
|
140 |
def process_text(text, similarity_threshold):
|
141 |
try:
|
142 |
+
return enhancer.enhance_text(text, min_similarity=similarity_threshold / 100)
|
|
|
|
|
|
|
|
|
|
|
143 |
except Exception as e:
|
144 |
return f"Error: {str(e)}"
|
145 |
|
|
|
160 |
],
|
161 |
outputs=gr.Textbox(label="Enhanced Text", lines=10),
|
162 |
title="Text Enhancement System",
|
163 |
+
description="Improve text quality while preserving original meaning.",
|
164 |
)
|
|
|
165 |
return interface
|
166 |
|
167 |
|