File size: 7,334 Bytes
6725d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration, pipeline
from sentence_transformers import SentenceTransformer, util
import openai
import random
import re
import requests
import warnings
from transformers import logging
import os
import tensorflow as tf
# Set your OpenAI API key

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 0 = all messages, 1 = INFO, 2 = WARNING, 3 = ERROR
tf.get_logger().setLevel('ERROR')

# Suppress Python warnings
warnings.filterwarnings("ignore", category=FutureWarning)  # Suppress FutureWarnings
warnings.filterwarnings("ignore", category=UserWarning)    # Suppress UserWarnings
warnings.filterwarnings("ignore")                          # Suppress all warnings (optional)

# Suppress Hugging Face Transformers warnings
logging.set_verbosity_error()
# GPT-powered sentence segmentation function
def segment_into_sentences_groq(passage):
    headers = {
        "Authorization": f"Bearer {GROQ_API_KEY}",
        "Content-Type": "application/json"
    }
    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
            "role": "system",
            "content": "you are to segment the sentence by adding '1!2@3#' at the end of each sentence. Return only the segmented sentences only return the modified passage and nothing else do not add your responses"
        },
            {
                "role": "user",
                "content": f"you are to segment the sentence by adding '1!2@3#' at the end of each sentence. Return only the segmented sentences only return the modified passage and nothing else do not add your responses. here is the passage:{passage}"
            }
        ],
        "temperature": 1.0,
        "max_tokens": 8192
    }
    print("response sent")
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=headers)
    print("response recieved")
    if response.status_code == 200:
        data = response.json()
        try:
            segmented_text = data.get("choices", [{}])[0].get("message", {}).get("content", "")
            print("SOP segmented")
            # Split sentences based on the custom token
            sentences = segmented_text.split("1!2@3#")
            return [sentence.strip() for sentence in sentences if sentence.strip()]
        except (IndexError, KeyError):
            raise ValueError("Unexpected response structure from Groq API.")
    else:
        raise ValueError(f"Groq API error: {response.text}")



class TextEnhancer:
    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        # Initialize paraphrase model
        self.paraphrase_tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
        self.paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(self.device)
        print("paraphraser loaded")
        # Initialize grammar correction
        self.grammar_pipeline = pipeline(
            "text2text-generation",
            model="Grammarly/coedit-large",
            device=0 if self.device == "cuda" else -1
        )
        print("grammar check loaded")
        # Initialize semantic similarity model
        self.similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2').to(self.device)
        print("sementics model loaded")

    def enhance_text(self, text, min_similarity=0.8, max_variations=3):
        # Use GPT for sentence segmentation
        sentences = segment_into_sentences_groq(text)

        enhanced_sentences = []
        
        for sentence in sentences:
            if not sentence.strip():
                continue

            inputs = self.paraphrase_tokenizer(
                f"paraphrase: {sentence}",
                return_tensors="pt",
                padding=True,
                max_length=150,
                truncation=True
            ).to(self.device)
        
            outputs = self.paraphrase_model.generate(
                **inputs,
                max_length=len(sentence.split()) + 20,
                num_return_sequences=max_variations,
                num_beams=max_variations,
                temperature=0.7
            )
        
            
            paraphrases = [
                self.paraphrase_tokenizer.decode(output, skip_special_tokens=True)
                for output in outputs
            ]
            
            sentence_embedding = self.similarity_model.encode(sentence)
            paraphrase_embeddings = self.similarity_model.encode(paraphrases)
            similarities = util.cos_sim(sentence_embedding, paraphrase_embeddings)
            
            valid_paraphrases = [
                para for para, sim in zip(paraphrases, similarities[0])
                if sim >= min_similarity
            ]
            
            if valid_paraphrases:
                corrected = self.grammar_pipeline(
                    valid_paraphrases[0],
                    max_length=150,
                    num_return_sequences=1
                )[0]["generated_text"]

                corrected = self._humanize_text(corrected)
                enhanced_sentences.append(corrected)
            else:
                enhanced_sentences.append(sentence)
                print(sentence)
        
        enhanced_text = ". ".join(sentence.rstrip(".") for sentence in enhanced_sentences) + "."
        return enhanced_text

    def _humanize_text(self, text):
        """
        Introduce small variations to make text appear more 'human-like'
        """
        # Randomly replace contractions in some sentences
        contractions = {"can't": "cannot", "won't": "will not", "I'm": "I am", "it's": "it is"}
        words = text.split()
        text = " ".join([contractions.get(word, word) if random.random() > 0.9 else word for word in words])

        # Add optional comma variations for natural breaks
        if random.random() > 0.7:
            text = text.replace(" and ", ", and ")
        
        # Minor variations in sentence structure
        if random.random() > 0.5:
            text = text.replace(" is ", " happens to be ")
        
        return text


def create_interface():
    enhancer = TextEnhancer()
    
    def process_text(text, similarity_threshold):
        try:
            enhanced = enhancer.enhance_text(
                text,
                min_similarity=similarity_threshold / 100
            )
            print("grammar enhanced")
            return enhanced
        except Exception as e:
            return f"Error: {str(e)}"
    
    interface = gr.Interface(
        fn=process_text,
        inputs=[
            gr.Textbox(
                label="Input Text",
                placeholder="Enter text to enhance...",
                lines=10
            ),
            gr.Slider(
                minimum=50,
                maximum=100,
                value=80,
                label="Minimum Semantic Similarity (%)"
            )
        ],
        outputs=gr.Textbox(label="Enhanced Text", lines=10),
        title="Text Enhancement System",
        description="Improve text quality while preserving original meaning"
    )
    
    return interface


if __name__ == "__main__":
    interface = create_interface()
    interface.launch()