# app.py # ============= # This is a complete app.py file for deploying the MTSAIR/Cotype-Nano model using Gradio and Hugging Face Transformers. import gradio as gr from transformers import pipeline # Load the model and pipeline model_name = "MTSAIR/Cotype-Nano" pipe = pipeline("text-generation", model=model_name, device="cpu") # Define the system prompt system_prompt = {"role": "system", "content": "Ты — ИИ-помощник. Тебе дано задание: необходимо сгенерировать подробный и развернутый ответ."} # Define the Gradio interface def generate_response(user_input): messages = [ system_prompt, {"role": "user", "content": user_input} ] response = pipe(messages, max_length=1024) return response[0]['generated_text'] # Create the Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.inputs.Textbox(lines=2, placeholder="Введите ваш запрос здесь..."), outputs="text", title="Cotype-Nano Text Generation", description="Введите ваш запрос, и Cotype-Nano сгенерирует ответ." ) # Launch the interface if __name__ == "__main__": iface.launch()