Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
|
3 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
import torch, re, base64
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler:
|
11 |
+
def __init__(self, path=""):
|
12 |
+
# load the optimized model
|
13 |
+
|
14 |
+
self.processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
15 |
+
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto")
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
def __call__(self, data: Any) -> Dict[str, Any]:
|
20 |
+
"""
|
21 |
+
Args:
|
22 |
+
data (:obj:):
|
23 |
+
includes the input data and the parameters for the inference.
|
24 |
+
Return:
|
25 |
+
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
|
26 |
+
- "caption": A string corresponding to the generated caption.
|
27 |
+
"""
|
28 |
+
# parameters = data.pop("parameters", {})
|
29 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
30 |
+
|
31 |
+
|
32 |
+
inputs = base64.b64decode(re.sub('^data:image/.+;base64,', '', data['inputs']))
|
33 |
+
|
34 |
+
raw_images = Image.open(BytesIO(inputs))
|
35 |
+
|
36 |
+
processed_image = self.processor(images=raw_images, return_tensors="pt").to(device)
|
37 |
+
|
38 |
+
out = self.model.generate(**processed_image)
|
39 |
+
|
40 |
+
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
41 |
+
|
42 |
+
# postprocess the prediction
|
43 |
+
return {"captions": captions}
|
44 |
+
|
45 |
+
|
46 |
+
EndpointHandler()
|