import streamlit as st from PIL import Image from transformers import pipeline from gtts import gTTS import torch st.set_page_config(page_title="Image to Audio Story", page_icon="🦜") # Load models once caption_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") story_pipeline = pipeline("text-generation", model="Qwen/Qwen2-1.5B") def extract_image_caption(image_data): img_obj = Image.open(image_data) caption_results = caption_pipeline(img_obj) return caption_results[0]['generated_text'] def compose_story_from_caption(caption_detail): prompt_text = ( "You are a talented and imaginative storyteller for children aged 3 to 10. " "Using the details derived from the image below, craft a captivating tale that goes beyond merely describing the scene. " "Let your creativity shine by introducing engaging characters, adventurous journeys, and delightful surprises. " "Your story should be vivid, original, and between 100 and 300 words in length.\n\n" f"Image Details: {caption_detail}\n\nStory:" ) story_results = story_pipeline(prompt_text, num_return_sequences=1) story_text = story_results[0]['generated_text'] return story_text.split("Story:", 1)[1].strip() if "Story:" in story_text else story_text.strip() def convert_text_to_audio(text_content, audio_path="output.mp3"): tts_engine = gTTS(text=text_content, lang="en") tts_engine.save(audio_path) return audio_path def run_app(): st.markdown("

Your Image to Audio Story 🦜

", unsafe_allow_html=True) st.write("Upload an image below and we will generate an engaging story from the picture, then convert the story into an audio playback!") uploaded_image = st.file_uploader("Select an Image", type=["png", "jpg", "jpeg"]) if uploaded_image is not None: image_display = Image.open(uploaded_image) st.image(image_display, caption="Uploaded Image", use_container_width=True) with st.spinner("Generating caption for the image..."): caption_text = extract_image_caption(uploaded_image) st.write("**Generated Caption:**", caption_text) with st.spinner("Composing story..."): story_text = compose_story_from_caption(caption_text) st.write("**Story:**") st.write(story_text) with st.spinner("Converting text to audio..."): audio_file = convert_text_to_audio(story_text) st.audio(audio_file, format="audio/mp3") if __name__ == "__main__": run_app()