import streamlit as st from PIL import Image from transformers import pipeline from gtts import gTTS import torch st.set_page_config(page_title="Image to Audio Story", page_icon="🦜") # Load models once caption_pipeline = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") story_pipeline = pipeline("text-generation", model="Qwen/Qwen2-1.5B") def extract_image_caption(image_data): img_obj = Image.open(image_data) caption_results = caption_pipeline(img_obj) return caption_results[0]['generated_text'] def compose_story_from_caption(caption_detail): prompt_text = ( "You are a talented and imaginative storyteller for children aged 3 to 10. " "Using the details derived from the image below, craft a captivating tale that goes beyond merely describing the scene. " "Let your creativity shine by introducing engaging characters, adventurous journeys, and delightful surprises. " "Your story should be vivid, original, and between 100 and 300 words in length.\n\n" f"Image Details: {caption_detail}\n\nStory:" ) story_results = story_pipeline(prompt_text, num_return_sequences=1) story_text = story_results[0]['generated_text'] return story_text.split("Story:", 1)[1].strip() if "Story:" in story_text else story_text.strip() def convert_text_to_audio(text_content, audio_path="output.mp3"): tts_engine = gTTS(text=text_content, lang="en") tts_engine.save(audio_path) return audio_path def run_app(): st.markdown("