File size: 1,582 Bytes
9d825e2 6927fa8 9d825e2 25c0bdf 9d825e2 25c0bdf 9d825e2 25c0bdf 9d825e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import streamlit as st
from transformers import pipeline
# function part
# img2text
def img2text(url):
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# text2story
def text2story(text):
story_text = "" # to be completed
return story_text
# text2audio
def text2audio(story_text):
audio_data = "" # to be completed
return audio_data
st.set_page_config(page_title="Your Image to Audio Story",
page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image",
use_column_width=True)
#Stage 1: Image to Text
st.text('Processing img2text...')
scenario = img2text(uploaded_file.name)
st.write(scenario)
#Stage 2: Text to Story
st.text('Generating a story...')
#story = text2story(scenario)
#st.write(story)
#Stage 3: Story to Audio data
#st.text('Generating audio data...')
#audio_data =text2audio(story)
# Play button
if st.button("Play Audio"):
#st.audio(audio_data['audio'],
# format="audio/wav",
# start_time=0,
# sample_rate = audio_data['sampling_rate'])
st.audio("kids_playing_audio.wav") |