Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload FinBERT_training.py
Browse files- FinBERT_training.py +82 -0
    	
        FinBERT_training.py
    ADDED
    
    | @@ -0,0 +1,82 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            os.environ["TOKENIZERS_PARALLELISM"] = "false"
         | 
| 3 | 
            +
            os.environ['WANDB_DISABLED'] = "true"
         | 
| 4 | 
            +
            import pandas as pd
         | 
| 5 | 
            +
            from sklearn.preprocessing import LabelEncoder
         | 
| 6 | 
            +
            from sklearn.model_selection import train_test_split
         | 
| 7 | 
            +
            from transformers import (
         | 
| 8 | 
            +
                AutoTokenizer, 
         | 
| 9 | 
            +
                DataCollatorWithPadding,
         | 
| 10 | 
            +
                TrainingArguments,
         | 
| 11 | 
            +
                Trainer,
         | 
| 12 | 
            +
                AutoModelForSequenceClassification
         | 
| 13 | 
            +
            )
         | 
| 14 | 
            +
            from datasets import Dataset
         | 
| 15 | 
            +
             
         | 
| 16 | 
            +
            #######################################
         | 
| 17 | 
            +
            ########## FinBERT training ###########
         | 
| 18 | 
            +
            #######################################
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            class args:
         | 
| 21 | 
            +
                model = 'ProsusAI/finbert'
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            df = pd.read_csv('all-data.csv', 
         | 
| 24 | 
            +
                             names = ['labels','messages'],
         | 
| 25 | 
            +
                             encoding='ISO-8859-1')
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            df = df[['messages', 'labels']]
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            le = LabelEncoder()
         | 
| 30 | 
            +
            df['labels'] = le.fit_transform(df['labels'])
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            X, y = df['messages'].values, df['labels'].values
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.1) 
         | 
| 35 | 
            +
            xtrain, xvalid, ytrain, yvalid = train_test_split(xtrain, ytrain, test_size=0.2) 
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            train_dataset_raw = Dataset.from_dict({'text':xtrain, 'labels':ytrain})
         | 
| 38 | 
            +
            valid_dataset_raw = Dataset.from_dict({'text':xvalid, 'labels':yvalid})
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(args.model)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            def tokenize_fn(examples):
         | 
| 43 | 
            +
                return tokenizer(examples['text'], truncation=True)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            train_dataset = train_dataset_raw.map(tokenize_fn, batched=True)
         | 
| 46 | 
            +
            valid_dataset = valid_dataset_raw.map(tokenize_fn, batched=True)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            data_collator = DataCollatorWithPadding(tokenizer)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            model = AutoModelForSequenceClassification.from_pretrained(args.model)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            train_args = TrainingArguments(
         | 
| 53 | 
            +
                './Finbert Trained/',
         | 
| 54 | 
            +
                per_device_train_batch_size=16,
         | 
| 55 | 
            +
                per_device_eval_batch_size=2*16,
         | 
| 56 | 
            +
                num_train_epochs=5,
         | 
| 57 | 
            +
                learning_rate=2e-5,
         | 
| 58 | 
            +
                weight_decay=0.01,
         | 
| 59 | 
            +
                warmup_ratio=0.1,    
         | 
| 60 | 
            +
                do_eval=True,
         | 
| 61 | 
            +
                do_train=True,
         | 
| 62 | 
            +
                do_predict=True,
         | 
| 63 | 
            +
                evaluation_strategy='epoch',
         | 
| 64 | 
            +
                save_strategy="no",
         | 
| 65 | 
            +
            )
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            trainer = Trainer(
         | 
| 68 | 
            +
                model,
         | 
| 69 | 
            +
                train_args,
         | 
| 70 | 
            +
                train_dataset=train_dataset,
         | 
| 71 | 
            +
                eval_dataset=valid_dataset,
         | 
| 72 | 
            +
                data_collator=data_collator,
         | 
| 73 | 
            +
                tokenizer=tokenizer 
         | 
| 74 | 
            +
            )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            trainer.train()
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            # saving the model and the weights
         | 
| 79 | 
            +
            model.save_pretrained('fine_tuned_FinBERT')
         | 
| 80 | 
            +
            # saving the tokenizer
         | 
| 81 | 
            +
            tokenizer.save_pretrained("fine_tuned_FinBERT/tokenizer/")
         | 
| 82 | 
            +
             |