Spaces:
Sleeping
Sleeping
import argparse | |
import torch | |
import json | |
from config import config | |
from typing import List, Dict | |
from logger import logger | |
from transformers import AutoTokenizer | |
import functions | |
from prompter import PromptManager | |
from validator import validate_function_call_schema | |
from langchain_community.chat_models import ChatOllama | |
from langchain_community.llms import Ollama | |
from langchain.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from utils import ( | |
get_chat_template, | |
validate_and_extract_tool_calls | |
) | |
class ModelInference: | |
def __init__(self, chat_template: str): | |
self.prompter = PromptManager() | |
self.model = Ollama(model=config.ollama_model, temperature=0.0, format='json') | |
template = PromptTemplate(template="""<|im_start|>system\nYou are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n<tool_call>\n{"arguments": <args-dict>, "name": <function-name>}\n</tool_call><|im_end|>\n""", input_variables=["question"]) | |
chain = template | self.model | StrOutputParser() | |
self.tokenizer = AutoTokenizer.from_pretrained(config.hf_model, trust_remote_code=True) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.tokenizer.padding_side = "left" | |
if self.tokenizer.chat_template is None: | |
print("No chat template defined, getting chat_template...") | |
self.tokenizer.chat_template = get_chat_template(chat_template) | |
logger.info(f"Model loaded: {self.model}") | |
def process_completion_and_validate(self, completion, chat_template): | |
if completion: | |
# completion = f"<tool_call>\n{completion}\n</tool_call>"] | |
validation, tool_calls, error_message = validate_and_extract_tool_calls(completion) | |
if validation: | |
logger.info(f"parsed tool calls:\n{json.dumps(tool_calls, indent=2)}") | |
return tool_calls, completion, error_message | |
else: | |
tool_calls = None | |
return tool_calls, completion, error_message | |
else: | |
logger.warning("Assistant message is None") | |
raise ValueError("Assistant message is None") | |
def execute_function_call(self, tool_call): | |
# config.status.update(label=":mag: Gathering information..") | |
function_name = tool_call.get("name") | |
function_to_call = getattr(functions, function_name, None) | |
function_args = tool_call.get("arguments", {}) | |
logger.info(f"Invoking function call {function_name} ...") | |
function_response = function_to_call(*function_args.values()) | |
results_dict = f'{{"name": "{function_name}", "content": {function_response}}}' | |
return results_dict | |
def run_inference(self, prompt: List[Dict[str, str]]): | |
inputs = self.tokenizer.apply_chat_template( | |
prompt, | |
add_generation_prompt=True, | |
tokenize=False, | |
) | |
inputs = inputs.replace("<|begin_of_text|>", "") # Something wrong with the chat template, hotfix | |
completion = self.model.invoke(inputs, format='json') | |
return completion.content | |
def generate_function_call(self, query, chat_template, num_fewshot, max_depth=5): | |
try: | |
depth = 0 | |
user_message = f"{query}\nThis is the first turn and you don't have <tool_results> to analyze yet" | |
chat = [{"role": "user", "content": user_message}] | |
tools = functions.get_openai_tools() | |
prompt = self.prompter.generate_prompt(chat, tools, num_fewshot) | |
# config.status.update(label=":brain: Thinking..") | |
completion = self.run_inference(prompt) | |
def recursive_loop(prompt, completion, depth): | |
nonlocal max_depth | |
tool_calls, assistant_message, error_message = self.process_completion_and_validate(completion, chat_template) | |
prompt.append({"role": "assistant", "content": assistant_message}) | |
tool_message = f"Agent iteration {depth} to assist with user query: {query}\n" | |
logger.info(f"Found tool calls: {tool_calls}") | |
if tool_calls: | |
logger.info(f"Assistant Message:\n{assistant_message}") | |
for tool_call in tool_calls: | |
validation, message = validate_function_call_schema(tool_call, tools) | |
if validation: | |
try: | |
function_response = self.execute_function_call(tool_call) | |
tool_message += f"<tool_response>\n{function_response}\n</tool_response>\n" | |
logger.info(f"Here's the response from the function call: {tool_call.get('name')}\n{function_response}") | |
except Exception as e: | |
logger.info(f"Could not execute function: {e}") | |
tool_message += f"<tool_response>\nThere was an error when executing the function: {tool_call.get('name')}\nHere's the error traceback: {e}\nPlease call this function again with correct arguments within XML tags <tool_call></tool_call>\n</tool_response>\n" | |
else: | |
logger.info(message) | |
tool_message += f"<tool_response>\nThere was an error validating function call against function signature: {tool_call.get('name')}\nHere's the error traceback: {message}\nPlease call this function again with correct arguments within XML tags <tool_call></tool_call>\n</tool_response>\n" | |
prompt.append({"role": "tool", "content": tool_message}) | |
depth += 1 | |
if depth >= max_depth: | |
print(f"Maximum recursion depth reached ({max_depth}). Stopping recursion.") | |
completion = self.run_inference(prompt) | |
return completion | |
# config.status.update(label=":brain: Analysing information..") | |
completion = self.run_inference(prompt) | |
return recursive_loop(prompt, completion, depth) | |
elif error_message: | |
logger.info(f"Assistant Message:\n{assistant_message}") | |
tool_message += f"<tool_response>\nThere was an error parsing function calls\n Here's the error stack trace: {error_message}\nPlease call the function again with correct syntax<tool_response>" | |
prompt.append({"role": "tool", "content": tool_message}) | |
depth += 1 | |
if depth >= max_depth: | |
print(f"Maximum recursion depth reached ({max_depth}). Stopping recursion.") | |
return completion | |
completion = self.run_inference(prompt) | |
return recursive_loop(prompt, completion, depth) | |
else: | |
logger.info(f"Assistant Message:\n{assistant_message}") | |
return assistant_message | |
return recursive_loop(prompt, completion, depth) | |
except Exception as e: | |
logger.error(f"Exception occurred: {e}") | |
raise e | |