Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,56 +6,51 @@ import time
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
from tqdm import tqdm
|
8 |
|
9 |
-
# Load the tokenizer and model (lightweight model as per your suggestion)
|
10 |
try:
|
11 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
12 |
-
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct", torch_dtype=torch.float16)
|
13 |
|
14 |
-
device =
|
15 |
-
model = model.to(device)
|
16 |
print(f"Model loaded on {device}")
|
|
|
17 |
except Exception as e:
|
18 |
print(f"Error loading model: {e}")
|
19 |
exit(1)
|
20 |
|
21 |
|
22 |
-
# Function to clean up memory
|
23 |
def clean_memory():
|
24 |
while True:
|
25 |
gc.collect()
|
26 |
-
if device ==
|
27 |
torch.cuda.empty_cache()
|
28 |
time.sleep(1)
|
29 |
|
30 |
-
# Start memory cleanup in a background thread
|
31 |
cleanup_thread = threading.Thread(target=clean_memory, daemon=True)
|
32 |
cleanup_thread.start()
|
33 |
|
|
|
34 |
def generate_response(message, history, max_tokens, temperature, top_p):
|
35 |
try:
|
36 |
-
# Add system message for better control
|
37 |
system_message = "You are a helpful and friendly AI assistant."
|
38 |
prompt = system_message + "\n" + "".join([f"{speaker}: {text}\n" for speaker, text in history] + [f"User: {message}\n"])
|
39 |
|
40 |
-
|
41 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
42 |
-
|
43 |
-
#Streaming response
|
44 |
generated_text = ""
|
45 |
with torch.no_grad():
|
46 |
-
for token_id in tqdm(model.generate(input_ids, max_length=input_ids.shape[-1] + max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, stream=True)):
|
47 |
generated_text = tokenizer.decode(token_id, skip_special_tokens=True)
|
48 |
yield generated_text
|
49 |
|
50 |
except Exception as e:
|
51 |
yield f"Error generating response: {e}"
|
52 |
|
|
|
53 |
def update_chatbox(history, message, max_tokens, temperature, top_p):
|
54 |
history.append(("User", message))
|
55 |
for response_chunk in generate_response(message, history, max_tokens, temperature, top_p):
|
56 |
-
yield history, response_chunk
|
57 |
|
58 |
-
#Append final response after generation complete
|
59 |
response = response_chunk.strip()
|
60 |
history.append(("AI", response))
|
61 |
yield history, ""
|
@@ -63,7 +58,7 @@ def update_chatbox(history, message, max_tokens, temperature, top_p):
|
|
63 |
|
64 |
with gr.Blocks(css=".gradio-container {border: none;}") as demo:
|
65 |
chat_history = gr.State([])
|
66 |
-
max_tokens = gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max Tokens")
|
67 |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
68 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
|
69 |
|
@@ -76,8 +71,7 @@ with gr.Blocks(css=".gradio-container {border: none;}") as demo:
|
|
76 |
inputs=[chat_history, user_input, max_tokens, temperature, top_p],
|
77 |
outputs=[chatbot, user_input],
|
78 |
queue=True,
|
79 |
-
live=True #For streaming updates
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
-
demo.launch(share=False)
|
|
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
from tqdm import tqdm
|
8 |
|
|
|
9 |
try:
|
10 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
|
11 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct", torch_dtype=torch.float16, device_map="auto")
|
12 |
|
13 |
+
device = model.device #Get device automatically
|
|
|
14 |
print(f"Model loaded on {device}")
|
15 |
+
|
16 |
except Exception as e:
|
17 |
print(f"Error loading model: {e}")
|
18 |
exit(1)
|
19 |
|
20 |
|
|
|
21 |
def clean_memory():
|
22 |
while True:
|
23 |
gc.collect()
|
24 |
+
if device.type == 'cuda': #Check device type explicitly
|
25 |
torch.cuda.empty_cache()
|
26 |
time.sleep(1)
|
27 |
|
|
|
28 |
cleanup_thread = threading.Thread(target=clean_memory, daemon=True)
|
29 |
cleanup_thread.start()
|
30 |
|
31 |
+
|
32 |
def generate_response(message, history, max_tokens, temperature, top_p):
|
33 |
try:
|
|
|
34 |
system_message = "You are a helpful and friendly AI assistant."
|
35 |
prompt = system_message + "\n" + "".join([f"{speaker}: {text}\n" for speaker, text in history] + [f"User: {message}\n"])
|
36 |
|
|
|
37 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
38 |
+
|
|
|
39 |
generated_text = ""
|
40 |
with torch.no_grad():
|
41 |
+
for token_id in tqdm(model.generate(input_ids, max_length=min(input_ids.shape[-1] + max_tokens, 2048), temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, stream=True)): # Added max length to prevent excessive generation
|
42 |
generated_text = tokenizer.decode(token_id, skip_special_tokens=True)
|
43 |
yield generated_text
|
44 |
|
45 |
except Exception as e:
|
46 |
yield f"Error generating response: {e}"
|
47 |
|
48 |
+
|
49 |
def update_chatbox(history, message, max_tokens, temperature, top_p):
|
50 |
history.append(("User", message))
|
51 |
for response_chunk in generate_response(message, history, max_tokens, temperature, top_p):
|
52 |
+
yield history, response_chunk
|
53 |
|
|
|
54 |
response = response_chunk.strip()
|
55 |
history.append(("AI", response))
|
56 |
yield history, ""
|
|
|
58 |
|
59 |
with gr.Blocks(css=".gradio-container {border: none;}") as demo:
|
60 |
chat_history = gr.State([])
|
61 |
+
max_tokens = gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max Tokens")
|
62 |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
63 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
|
64 |
|
|
|
71 |
inputs=[chat_history, user_input, max_tokens, temperature, top_p],
|
72 |
outputs=[chatbot, user_input],
|
73 |
queue=True,
|
|
|
74 |
)
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
+
demo.launch(share=False)
|