Spaces:
Running
Running
from openai import OpenAI | |
from dotenv import load_dotenv | |
import os | |
import threading | |
import time | |
import gradio as gr | |
from lang import LANGUAGE_CONFIG | |
# 环境变量预校验 | |
load_dotenv(override=True) | |
required_env_vars = ["API_KEY", "API_URL", "API_MODEL"] | |
missing_vars = [var for var in required_env_vars if not os.getenv(var)] | |
if missing_vars: | |
raise EnvironmentError( | |
f"Missing required environment variables: {', '.join(missing_vars)}" | |
) | |
class AppConfig: | |
DEFAULT_THROUGHPUT = 10 | |
SYNC_THRESHOLD_DEFAULT = 0 | |
API_TIMEOUT = 20 | |
LOADING_DEFAULT = ( | |
"✅ Ready! <br> Think together with AI. Use Shift+Enter to toggle generation" | |
) | |
class DynamicState: | |
"""动态UI状态""" | |
def __init__(self): | |
self.should_stream = False | |
self.stream_completed = False | |
self.in_cot = True | |
self.current_language = "en" | |
self.waiting_api = False # 新增等待状态标志 | |
def control_button_handler(self): | |
original_state = self.should_stream | |
self.should_stream = not self.should_stream | |
# 当从暂停->生成时激活等待状态 | |
if not original_state and self.should_stream: | |
self.waiting_api = True | |
self.stream_completed = False | |
return self.ui_state_controller() | |
def ui_state_controller(self): | |
"""生成动态UI组件状态""" | |
# [control_button, thought_editor, reset_button] | |
lang_data = LANGUAGE_CONFIG[self.current_language] | |
control_value = ( | |
lang_data["pause_btn"] if self.should_stream else lang_data["generate_btn"] | |
) | |
control_variant = "secondary" if self.should_stream else "primary" | |
# 处理等待状态显示 | |
if self.waiting_api: | |
status_suffix = lang_data["waiting_api"] | |
else: | |
status_suffix = ( | |
lang_data["completed"] | |
if self.stream_completed | |
else lang_data["interrupted"] | |
) | |
editor_label = f"{lang_data['editor_label']} - {status_suffix}" | |
return ( | |
gr.update(value=control_value, variant=control_variant), | |
gr.update(label=editor_label), | |
gr.update(interactive=not self.should_stream), | |
) | |
def reset_workspace(self): | |
"""重置工作区状态""" | |
self.stream_completed = False | |
self.should_stream = False | |
self.in_cot = True | |
return self.ui_state_controller() + ( | |
"", | |
"", | |
LANGUAGE_CONFIG["en"]["bot_default"], | |
) | |
class CoordinationManager: | |
"""管理人类与AI的协同节奏""" | |
def __init__(self, paragraph_threshold, initial_content): | |
self.paragraph_threshold = paragraph_threshold | |
self.initial_paragraph_count = initial_content.count("\n\n") | |
self.triggered = False | |
def should_pause_for_human(self, current_content): | |
if self.paragraph_threshold <= 0 or self.triggered: | |
return False | |
current_paragraphs = current_content.count("\n\n") | |
if ( | |
current_paragraphs - self.initial_paragraph_count | |
>= self.paragraph_threshold | |
): | |
self.triggered = True | |
return True | |
return False | |
class ConvoState: | |
"""State of current ROUND of convo""" | |
def __init__(self): | |
self.throughput = AppConfig.DEFAULT_THROUGHPUT | |
self.sync_threshold = AppConfig.SYNC_THRESHOLD_DEFAULT | |
self.current_language = "en" | |
self.convo = [] | |
self.initialize_new_round() | |
def initialize_new_round(self): | |
self.current = {} | |
self.current["user"] = "" | |
self.current["cot"] = "" | |
self.current["result"] = "" | |
self.convo.append(self.current) | |
def flatten_output(self): | |
output = [] | |
for round in self.convo: | |
output.append({"role": "user", "content": round["user"]}) | |
if len(round["cot"]) > 0: | |
output.append( | |
{ | |
"role": "assistant", | |
"content": round["cot"], | |
"metadata": {"title": f"Chain of Thought"}, | |
} | |
) | |
if len(round["result"]) > 0: | |
output.append({"role": "assistant", "content": round["result"]}) | |
return output | |
def generate_ai_response(self, user_prompt, current_content, dynamic_state): | |
lang_data = LANGUAGE_CONFIG[self.current_language] | |
dynamic_state.stream_completed = False | |
full_response = current_content | |
api_client = OpenAI( | |
api_key=os.getenv("API_KEY"), | |
base_url=os.getenv("API_URL"), | |
timeout=AppConfig.API_TIMEOUT, | |
) | |
coordinator = CoordinationManager(self.sync_threshold, current_content) | |
try: | |
# 初始等待状态更新 | |
if dynamic_state.waiting_api: | |
status = lang_data["waiting_api"] | |
editor_label = f"{lang_data['editor_label']} - {status}" | |
yield full_response, gr.update(label=editor_label), self.flatten_output() | |
coordinator = CoordinationManager(self.sync_threshold, current_content) | |
messages = [ | |
{"role": "user", "content": user_prompt}, | |
{ | |
"role": "assistant", | |
"content": f"<think>\n{current_content}", | |
"prefix": True, | |
}, | |
] | |
self.current["user"] = user_prompt | |
response_stream = api_client.chat.completions.create( | |
model=os.getenv("API_MODEL"), | |
messages=messages, | |
stream=True, | |
timeout=AppConfig.API_TIMEOUT, | |
) | |
for chunk in response_stream: | |
chunk_content = chunk.choices[0].delta.content | |
if coordinator.should_pause_for_human(full_response): | |
dynamic_state.should_stream = False | |
if not dynamic_state.should_stream: | |
break | |
if chunk_content: | |
dynamic_state.waiting_api = False | |
full_response += chunk_content | |
# Update Convo State | |
think_complete = "</think>" in full_response | |
dynamic_state.in_cot = not think_complete | |
if think_complete: | |
self.current["cot"], self.current["result"] = ( | |
full_response.split("</think>") | |
) | |
else: | |
self.current["cot"], self.current["result"] = ( | |
full_response, | |
"", | |
) | |
status = ( | |
lang_data["loading_thinking"] | |
if dynamic_state.in_cot | |
else lang_data["loading_output"] | |
) | |
editor_label = f"{lang_data['editor_label']} - {status}" | |
yield full_response, gr.update( | |
label=editor_label | |
), self.flatten_output() | |
interval = 1.0 / self.throughput | |
start_time = time.time() | |
while ( | |
time.time() - start_time | |
) < interval and dynamic_state.should_stream: | |
time.sleep(0.005) | |
except Exception as e: | |
error_msg = LANGUAGE_CONFIG[self.current_language].get("error", "Error") | |
full_response += f"\n\n[{error_msg}: {str(e)}]" | |
editor_label = f"{lang_data['editor_label']} - {error_msg}" | |
yield full_response, gr.update( | |
label=editor_label | |
), self.flatten_output() + [ | |
{ | |
"role": "assistant", | |
"content": error_msg, | |
"metadata": {"title": f"❌Error"}, | |
} | |
] | |
finally: | |
dynamic_state.should_stream = False | |
if "response_stream" in locals(): | |
response_stream.close() | |
final_status = ( | |
lang_data["completed"] | |
if dynamic_state.stream_completed | |
else lang_data["interrupted"] | |
) | |
editor_label = f"{lang_data['editor_label']} - {final_status}" | |
yield full_response, gr.update(label=editor_label), self.flatten_output() | |
def update_interface_language(selected_lang, convo_state, dynamic_state): | |
"""更新界面语言配置""" | |
convo_state.current_language = selected_lang | |
dynamic_state.current_language = selected_lang | |
lang_data = LANGUAGE_CONFIG[selected_lang] | |
base_editor_label = lang_data["editor_label"] | |
status_suffix = ( | |
lang_data["completed"] | |
if dynamic_state.stream_completed | |
else lang_data["interrupted"] | |
) | |
editor_label = f"{base_editor_label} - {status_suffix}" | |
return [ | |
gr.update(value=f"{lang_data['title']}"), | |
gr.update( | |
label=lang_data["prompt_label"], placeholder=lang_data["prompt_placeholder"] | |
), | |
gr.update(label=editor_label, placeholder=lang_data["editor_placeholder"]), | |
gr.update( | |
label=lang_data["sync_threshold_label"], | |
info=lang_data["sync_threshold_info"], | |
), | |
gr.update( | |
label=lang_data["throughput_label"], info=lang_data["throughput_info"] | |
), | |
gr.update( | |
value=( | |
lang_data["pause_btn"] | |
if dynamic_state.should_stream | |
else lang_data["generate_btn"] | |
), | |
variant="secondary" if dynamic_state.should_stream else "primary", | |
), | |
gr.update(label=lang_data["language_label"]), | |
gr.update( | |
value=lang_data["clear_btn"], interactive=not dynamic_state.should_stream | |
), | |
gr.update(value=lang_data["introduction"]), | |
gr.update(value=lang_data["bot_default"], label=lang_data["bot_label"]), | |
] | |
theme = gr.themes.Base(font="system-ui", primary_hue="stone") | |
with gr.Blocks(theme=theme, css_paths="styles.css") as demo: | |
convo_state = gr.State(ConvoState) | |
dynamic_state = gr.State(DynamicState) | |
with gr.Row(variant=""): | |
title_md = gr.Markdown( | |
f"## {LANGUAGE_CONFIG['en']['title']} \n GitHub: https://github.com/Intelligent-Internet/CoT-Lab-Demo", | |
container=False, | |
) | |
lang_selector = gr.Dropdown( | |
choices=["en", "zh"], | |
value="en", | |
elem_id="compact_lang_selector", | |
scale=0, | |
container=False, | |
) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1, min_width=400): | |
prompt_input = gr.Textbox( | |
label=LANGUAGE_CONFIG["en"]["prompt_label"], | |
lines=2, | |
placeholder=LANGUAGE_CONFIG["en"]["prompt_placeholder"], | |
max_lines=5, | |
) | |
thought_editor = gr.Textbox( | |
label=f"{LANGUAGE_CONFIG['en']['editor_label']} - {LANGUAGE_CONFIG['en']['editor_default']}", | |
lines=16, | |
placeholder=LANGUAGE_CONFIG["en"]["editor_placeholder"], | |
autofocus=True, | |
elem_id="editor", | |
) | |
with gr.Row(): | |
control_button = gr.Button( | |
value=LANGUAGE_CONFIG["en"]["generate_btn"], variant="primary" | |
) | |
next_turn_btn = gr.Button( | |
value=LANGUAGE_CONFIG["en"]["clear_btn"], interactive=True | |
) | |
with gr.Column(scale=1, min_width=500): | |
chatbot = gr.Chatbot( | |
type="messages", | |
height=300, | |
value=LANGUAGE_CONFIG["en"]["bot_default"] + [{"role":"assistant", "content": f"Running `{os.getenv('API_MODEL')}` @ {os.getenv('API_URL')} \n Responsiveness subjects to API provider situation","metadata": {"title": f"API INFO"},}], | |
group_consecutive_messages=False, | |
show_copy_all_button=True, | |
show_share_button=True, | |
label=LANGUAGE_CONFIG["en"]["bot_label"], | |
) | |
with gr.Row(): | |
sync_threshold_slider = gr.Slider( | |
minimum=0, | |
maximum=20, | |
value=AppConfig.SYNC_THRESHOLD_DEFAULT, | |
step=1, | |
label=LANGUAGE_CONFIG["en"]["sync_threshold_label"], | |
info=LANGUAGE_CONFIG["en"]["sync_threshold_info"], | |
) | |
throughput_control = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=AppConfig.DEFAULT_THROUGHPUT, | |
step=1, | |
label=LANGUAGE_CONFIG["en"]["throughput_label"], | |
info=LANGUAGE_CONFIG["en"]["throughput_info"], | |
) | |
intro_md = gr.Markdown(LANGUAGE_CONFIG["en"]["introduction"], visible=False) | |
# 交互逻辑 | |
stateful_ui = (control_button, thought_editor, next_turn_btn) | |
throughput_control.change( | |
lambda val, s: setattr(s, "throughput", val), | |
[throughput_control, convo_state], | |
None, | |
concurrency_limit=None, | |
) | |
sync_threshold_slider.change( | |
lambda val, s: setattr(s, "sync_threshold", val), | |
[sync_threshold_slider, convo_state], | |
None, | |
concurrency_limit=None, | |
) | |
def wrap_stream_generator(convo_state, dynamic_state, prompt, content): | |
for response in convo_state.generate_ai_response( | |
prompt, content, dynamic_state | |
): | |
yield response | |
gr.on( | |
[control_button.click, prompt_input.submit, thought_editor.submit], | |
lambda d: d.control_button_handler(), | |
[dynamic_state], | |
stateful_ui, | |
show_progress=False, | |
concurrency_limit=None, | |
).then( | |
wrap_stream_generator, | |
[convo_state, dynamic_state, prompt_input, thought_editor], | |
[thought_editor, thought_editor, chatbot], | |
concurrency_limit=1000, | |
).then( | |
lambda d: d.ui_state_controller(), | |
[dynamic_state], | |
stateful_ui, | |
show_progress=False, | |
concurrency_limit=None | |
) | |
next_turn_btn.click( | |
lambda d: d.reset_workspace(), | |
[dynamic_state], | |
stateful_ui + (thought_editor, prompt_input, chatbot), | |
concurrency_limit=None, | |
) | |
lang_selector.change( | |
lambda lang, s, d: update_interface_language(lang, s, d), | |
[lang_selector, convo_state, dynamic_state], | |
[ | |
title_md, | |
prompt_input, | |
thought_editor, | |
sync_threshold_slider, | |
throughput_control, | |
control_button, | |
lang_selector, | |
next_turn_btn, | |
intro_md, | |
chatbot, | |
], | |
concurrency_limit=None, | |
) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=1000) | |
demo.launch() | |