Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chat_models import ChatOpenAI
|
2 |
+
from langchain.chains import ConversationChain
|
3 |
+
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
4 |
+
from langchain.prompts import (
|
5 |
+
SystemMessagePromptTemplate,
|
6 |
+
HumanMessagePromptTemplate,
|
7 |
+
ChatPromptTemplate,
|
8 |
+
MessagesPlaceholder
|
9 |
+
)
|
10 |
+
import streamlit as st
|
11 |
+
from streamlit_chat import message
|
12 |
+
from utils import *
|
13 |
+
import os
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
# Load environment variables from the .env file
|
17 |
+
load_dotenv()
|
18 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
19 |
+
if OPENAI_API_KEY is None:
|
20 |
+
raise ValueError("OpenAI API key is not found in the .env file")
|
21 |
+
st.subheader("Insightly Chatbot")
|
22 |
+
|
23 |
+
if 'responses' not in st.session_state:
|
24 |
+
st.session_state['responses'] = ["How can I assist you?"]
|
25 |
+
|
26 |
+
if 'requests' not in st.session_state:
|
27 |
+
st.session_state['requests'] = []
|
28 |
+
|
29 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
|
30 |
+
|
31 |
+
if 'buffer_memory' not in st.session_state:
|
32 |
+
st.session_state.buffer_memory=ConversationBufferWindowMemory(k=3,return_messages=True)
|
33 |
+
|
34 |
+
|
35 |
+
system_msg_template = SystemMessagePromptTemplate.from_template(template="""Answer the question as truthfully as possible using the provided context,
|
36 |
+
and if the answer is not contained within the text below, say 'I don't know'""")
|
37 |
+
|
38 |
+
|
39 |
+
human_msg_template = HumanMessagePromptTemplate.from_template(template="{input}")
|
40 |
+
|
41 |
+
prompt_template = ChatPromptTemplate.from_messages([system_msg_template, MessagesPlaceholder(variable_name="history"), human_msg_template])
|
42 |
+
|
43 |
+
conversation = ConversationChain(memory=st.session_state.buffer_memory, prompt=prompt_template, llm=llm, verbose=True)
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
# container for chat history
|
49 |
+
response_container = st.container()
|
50 |
+
# container for text box
|
51 |
+
textcontainer = st.container()
|
52 |
+
|
53 |
+
|
54 |
+
with textcontainer:
|
55 |
+
query = st.text_input("Query: ", key="input")
|
56 |
+
if query:
|
57 |
+
with st.spinner("typing..."):
|
58 |
+
conversation_string = get_conversation_string()
|
59 |
+
# st.code(conversation_string)
|
60 |
+
refined_query = query_refiner(conversation_string, query)
|
61 |
+
st.subheader("Refined Query:")
|
62 |
+
st.write(refined_query)
|
63 |
+
context = find_match(refined_query)
|
64 |
+
# print(context)
|
65 |
+
response = conversation.predict(input=f"Context:\n {context} \n\n Query:\n{query}")
|
66 |
+
st.session_state.requests.append(query)
|
67 |
+
st.session_state.responses.append(response)
|
68 |
+
with response_container:
|
69 |
+
if st.session_state['responses']:
|
70 |
+
|
71 |
+
for i in range(len(st.session_state['responses'])):
|
72 |
+
message(st.session_state['responses'][i],key=str(i))
|
73 |
+
if i < len(st.session_state['requests']):
|
74 |
+
message(st.session_state["requests"][i], is_user=True,key=str(i)+ '_user')
|