|
""" |
|
Copyright 2024 Infosys Ltd.” |
|
|
|
Use of this source code is governed by MIT license that can be found in the LICENSE file or at |
|
MIT license https://opensource.org/licenses/MIT |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
|
|
""" |
|
from io import StringIO, BytesIO |
|
import pytest |
|
from fairness.dao.WorkBench.FileStoreDb import FileStoreReportDb |
|
from gridfs import GridFS, GridOut |
|
from mongomock import gridfs |
|
from test.MockDB import Database_MockDB |
|
import time |
|
import json |
|
from gridfs.errors import NoFile, FileExists |
|
import pandas |
|
from sklearn.datasets import load_iris, fetch_california_housing |
|
from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor |
|
from sklearn.model_selection import train_test_split |
|
import joblib |
|
import pickle |
|
from fastapi import UploadFile |
|
from starlette.datastructures import Headers |
|
import os |
|
from io import BytesIO |
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def llm_connection_credentails(): |
|
|
|
llm_connection_credentails = '''[{ |
|
"name": "openai", |
|
"value": "GPT_4", |
|
"details": { |
|
"api_type": "mocked_api_type", |
|
"api_base": "Mocked Api-base", |
|
"api_version": "2023-07-01-preview", |
|
"api_key": "mocked-api_key" |
|
}, |
|
"active": true |
|
}]''' |
|
return llm_connection_credentails |
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def csv_data(): |
|
|
|
csv_data={"race":["Black","White","Black","White","White"], |
|
"sex":["Male","Female","Male","Female","Male"], |
|
"age":[12,34,123,123,12], |
|
"education":["Bachelors","Bachelors","Bachelors","Bachelors","Bachelors"], |
|
"relationship":["Husband","Wife","Husband","Wife","Husband"], |
|
"occupation":["Machine-op-inspct","Protective-serv","Exec-managerial","Protective-serv","Protective-serv"],"income-per-year":["<=50K","<=50K","<=50K",">50K",">50K"]} |
|
return csv_data |
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def csv_data_model(): |
|
csv_data_model={"age":[37,48,21,38,56,63,46,26,28,42,46], |
|
"fnlwgt":[48779,40666,203076,166062,138593,331527,181363,141824,339897,147510,138107], |
|
"education-num":[13,7,9,9,12,9,12,10,2,13,14], |
|
"capital-gain":[0,0,0,0,0,0,0,0,0,0,0], |
|
"capital-loss":[0,0,0,0,0,0,0,0,0,0,0], |
|
"hours-per-week":[40,60,35,50,40,14,40,40,43,40,60], |
|
"workclass":[1,4,4,4,7,0,4,4,4,2,2], |
|
"education":[9,1,11,11,7,11,7,15,3,9,12], |
|
"marital-status":[2,2,4,0,0,2,2,0,2,5,2], |
|
"occupation":[10,6,6,1,10,0,4,4,7,10,4], |
|
"relationship":[0,0,3,1,1,0,0,1,0,4,0], |
|
"native-country":[39,39,39,39,39,39,39,39,26,39,39], |
|
"income-per-year":[0,0,0,0,0,0,1,0,0,0,1], |
|
"race":[4,4,4,4,4,4,4,4,4,4,4], |
|
"sex":[1,1,1,0,0,1,1,0,1,1,1],} |
|
return csv_data_model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def batch_data(): |
|
|
|
mydoc=[{ |
|
"UserId": "admin", |
|
"Status": "In-progress", |
|
"CreatedDateTime": "sdhjk", |
|
"LastUpdatedDateTime": "jhjkgjk", |
|
"BatchId": 123.124, |
|
"DataId": 12.12, |
|
"ModelId": 543748789476.34674, |
|
"TenetId": 1 |
|
}, |
|
{ |
|
"UserId": "admin", |
|
"Status": "In-progress", |
|
"CreatedDateTime": "sdhjk", |
|
"LastUpdatedDateTime": "jhjkgjk", |
|
"BatchId": 123.125, |
|
"DataId": 12.124, |
|
"ModelId":13.13 , |
|
"TenetId": 1 |
|
} |
|
] |
|
return mydoc |
|
|
|
def dataset_data(file_id, file_id_model): |
|
|
|
mydoc=[{ |
|
"UserId": "admin", |
|
"DataSetName": "adult", |
|
"isActive": "Y", |
|
"SampleData":file_id , |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12 |
|
}, |
|
{ |
|
"UserId": "admin", |
|
"DataSetName": "adult", |
|
"isActive": "Y", |
|
"SampleData":file_id_model , |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.124 |
|
}] |
|
return mydoc |
|
|
|
|
|
def model_data(model_Id): |
|
mydoc = { |
|
"UserId": "Admin", |
|
"ModelId": 13.13, |
|
"ModelName": "Fairness_Model_Test", |
|
"ModelVersion": 0, |
|
"IsActive": "Y", |
|
"ModelData": model_Id, |
|
"ModelEndPoint": "NA", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "" |
|
} |
|
return mydoc |
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def Tenet_data(): |
|
log.info("tenet start") |
|
mydoc={ |
|
"Id": 1, |
|
"TenetName": "Fairness" |
|
} |
|
log.info("tenet excuted") |
|
return mydoc |
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def dataattributes_data(): |
|
|
|
mydoc = [ |
|
{ |
|
"DataAttributeId": 1, |
|
"DataAttributeName": "biasType", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 2, |
|
"DataAttributeName": "methodType", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 3, |
|
"DataAttributeName": "taskType", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 4, |
|
"DataAttributeName": "label", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 5, |
|
"DataAttributeName": "protectedAttribute", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 6, |
|
"DataAttributeName": "favorableOutcome", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 7, |
|
"DataAttributeName": "CategoricalAttributes", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 8, |
|
"DataAttributeName": "features", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 9, |
|
"DataAttributeName": "privilegedGroup", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 10, |
|
"DataAttributeName": "MitigationType", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
}, |
|
{ |
|
"DataAttributeId": 11, |
|
"DataAttributeName": "MitigationTechnique", |
|
"isActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"TenetId": 0 |
|
} |
|
] |
|
|
|
return mydoc |
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def modelttributes_data(): |
|
mydoc =[{ |
|
"ModelAttributeId": 1, |
|
"ModelAttributeName": "label", |
|
"IsActive": "Y", |
|
"TenetId": 0, |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "" |
|
},{ |
|
"ModelAttributeId": 2, |
|
"ModelAttributeName": "sensitiveFeatures", |
|
"IsActive": "Y", |
|
"TenetId": 0, |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "" |
|
}] |
|
return mydoc |
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def dataattributesValues_data(): |
|
mydoc = [{ |
|
"DataAttributeValuesId": 1, |
|
"DataAttributeId": 1, |
|
"DataAttributeValues": "PRETRAIN", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 2, |
|
"DataAttributeId": 2, |
|
"DataAttributeValues": "ALL", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 4, |
|
"DataAttributeId": 4, |
|
"DataAttributeValues": "income-per-year", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 6, |
|
"DataAttributeId": 6, |
|
"DataAttributeValues": ">50K", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 8, |
|
"DataAttributeId": 8, |
|
"DataAttributeValues": [ |
|
"age", |
|
"workclass", |
|
"hours-per-week", |
|
"education", |
|
"native-country", |
|
"race", |
|
"sex", |
|
"income-per-year" |
|
], |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 7, |
|
"DataAttributeId": 7, |
|
"DataAttributeValues": [ |
|
"education", |
|
"native-country", |
|
"workclass", |
|
"sex" |
|
], |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DatasetID": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 3, |
|
"DataAttributeId": 3, |
|
"DataAttributeValues": "CLASSIFICATION", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 9, |
|
"DataAttributeId": 9, |
|
"DataAttributeValues": "White", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 5, |
|
"DataAttributeId": 5, |
|
"DataAttributeValues": "race", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 10, |
|
"DataAttributeId": 10, |
|
"DataAttributeValues": "PREPROCESSING", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}, |
|
{ |
|
"DataAttributeValuesId": 11, |
|
"DataAttributeId": 11, |
|
"DataAttributeValues": "REWEIGHING", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"DataId": 12.12, |
|
"BatchId": 123.124 |
|
}] |
|
return mydoc |
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def modelattributesValues_data(): |
|
mydoc = [{ |
|
"ModelAttributeValuesId": 1, |
|
"ModelAttributeId": 1, |
|
"ModelId": 13.13, |
|
"ModelAttributeValues": "income-per-year", |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"BatchId": 123.125 |
|
}, |
|
{ |
|
"ModelAttributeValuesId": 2, |
|
"ModelAttributeId": 2, |
|
"ModelId": 13.13, |
|
"ModelAttributeValues": [ |
|
"race" |
|
], |
|
"IsActive": "Y", |
|
"CreatedDateTime": "", |
|
"LastUpdatedDateTime": "", |
|
"BatchId": 123.125 |
|
}] |
|
return mydoc |
|
|
|
|
|
def save_file(obj, file, filename, contentType, tenet): |
|
|
|
|
|
if file is None: |
|
raise ValueError("File content cannot be None") |
|
|
|
|
|
if filename is None or contentType is None or tenet is None: |
|
raise ValueError("Filename, contentType, and tenet cannot be None") |
|
|
|
localTime = time.time() |
|
time.sleep(1/1000) |
|
try: |
|
with obj.new_file(_id=str(localTime), |
|
filename=filename, |
|
contentType=contentType, |
|
tenet=tenet, |
|
) as f: |
|
f.write(file) |
|
except FileExists: |
|
raise FileExistsError( |
|
f"A file with the same ID ({localTime}) already exists") |
|
except Exception as e: |
|
raise IOError(f"An error occurred while writing the file: {str(e)}") |
|
|
|
return f._id |
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True) |
|
def setup_database(llm_connection_credentails,csv_data,csv_data_model,batch_data,Tenet_data,dataattributes_data, dataattributesValues_data, modelttributes_data, modelattributesValues_data): |
|
|
|
|
|
df=pandas.DataFrame(csv_data) |
|
csv_buffer = StringIO() |
|
df.to_csv(csv_buffer, index=False) |
|
csv_binary = csv_buffer.getvalue().encode() |
|
csv_buffer.close() |
|
df2=pandas.DataFrame(csv_data_model) |
|
csv_buffer_md = StringIO() |
|
df2.to_csv(csv_buffer_md, index=False) |
|
csv_binary_model = csv_buffer_md.getvalue().encode() |
|
csv_buffer_md.close() |
|
|
|
|
|
gridfs.enable_gridfs_integration() |
|
obj = Database_MockDB() |
|
fs = GridFS(obj.db) |
|
file_id = save_file(fs, csv_binary, "Consistency_1.csv", "csv", "fairness") |
|
file_id_model = save_file(fs, csv_binary_model, "modeldataset.csv", "csv", "fairness") |
|
dataset_data_=dataset_data(file_id,file_id_model) |
|
model_path = 'test/test_files/model.joblib' |
|
|
|
model_content=joblib.load(model_path) |
|
model_byte_stream = BytesIO() |
|
joblib.dump(model_content, model_byte_stream) |
|
model_byte_stream.seek(0) |
|
|
|
model_Id = save_file(fs, model_byte_stream, "model.joblib", "joblib", "fairness") |
|
model_data_ = model_data(model_Id) |
|
|
|
json_content=json.loads(llm_connection_credentails) |
|
|
|
response = obj.db['llm_connection_credentails'].insert_many(json_content) |
|
|
|
|
|
mydata = obj.db['Batch'] |
|
CreateData= mydata.insert_many(batch_data) |
|
dataset = obj.db['Dataset'].insert_many(dataset_data_) |
|
tenet = obj.db['Tenet'] |
|
create_tenet = tenet.insert_one(Tenet_data) |
|
dataattributes = obj.db['DataAttributes'].insert_many(dataattributes_data) |
|
dataattributesValues = obj.db['DataAttributesValues'].insert_many(dataattributesValues_data) |
|
model = obj.db['Model'].insert_one(model_data_) |
|
modelattributes = obj.db['ModelAttributes'].insert_many(modelttributes_data) |
|
modelattributesValues = obj.db['ModelAttributesValues'].insert_many(modelattributesValues_data) |
|
rec_id= CreateData.inserted_ids[0] |
|
rec_id_model= CreateData.inserted_ids[1] |
|
values = mydata.find_one({'_id': rec_id},{"BatchId": 1, "_id": 0}) |
|
value = mydata.find_one({'_id': rec_id_model},{"BatchId": 1, "_id": 0}) |
|
tenet_name = "Fairness" |
|
tenet_Id = tenet.find_one({"TenetName": tenet_name}) |
|
log.info(f"{tenet_Id}tenet_Id") |
|
batch_id = values['BatchId'] |
|
batch_id_model = value['BatchId'] |
|
log.info(f"file{file_id}") |
|
log.info(f"{batch_id}batch_id") |
|
log.info(f"file{file_id_model}") |
|
yield [obj, file_id,batch_id,file_id_model,model_Id,batch_id_model] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|