Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,11 +3,68 @@ import torch
|
|
| 3 |
from transformers import pipeline
|
| 4 |
import os
|
| 5 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
#load_dotenv()
|
| 8 |
key=os.environ["HF_KEY"]
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def load_model():
|
| 12 |
print("[INFO] Loading model... This may take a minute on Spaces")
|
| 13 |
pipe = pipeline(
|
|
@@ -29,7 +86,13 @@ def predict(text):
|
|
| 29 |
outputs = pipe(text)
|
| 30 |
scores= [x["score"] for x in outputs]
|
| 31 |
tokens= [x["token_str"] for x in outputs]
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Create Gradio interface
|
| 35 |
with gr.Blocks() as demo:
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
import os
|
| 5 |
import spaces
|
| 6 |
+
from huggingface_hub import CommitScheduler
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import uuid
|
| 9 |
+
import json
|
| 10 |
+
import time
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
# Configure logging
|
| 15 |
+
logging.basicConfig(
|
| 16 |
+
level=logging.INFO,
|
| 17 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 18 |
+
handlers=[
|
| 19 |
+
logging.FileHandler("app.log"),
|
| 20 |
+
logging.StreamHandler()
|
| 21 |
+
]
|
| 22 |
+
)
|
| 23 |
+
logger = logging.getLogger("darija-masked-lm")
|
| 24 |
|
| 25 |
#load_dotenv()
|
| 26 |
key=os.environ["HF_KEY"]
|
| 27 |
|
| 28 |
|
| 29 |
+
# Define the file where to save the data
|
| 30 |
+
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json"
|
| 31 |
+
feedback_file = submit_file
|
| 32 |
+
|
| 33 |
+
# Create directory if it doesn't exist
|
| 34 |
+
submit_file.parent.mkdir(exist_ok=True, parents=True)
|
| 35 |
+
logger.info(f"Created feedback file: {feedback_file}")
|
| 36 |
+
|
| 37 |
+
scheduler = CommitScheduler(
|
| 38 |
+
repo_id="atlasia/atlaset_inference_ds",
|
| 39 |
+
repo_type="dataset",
|
| 40 |
+
folder_path=submit_file.parent,
|
| 41 |
+
path_in_repo="masked_lm",
|
| 42 |
+
every=5,
|
| 43 |
+
token=key
|
| 44 |
+
)
|
| 45 |
+
logger.info(f"Initialized CommitScheduler for repo: atlasia/atlaset_inference_ds")
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def save_feedback(input, output) -> None:
|
| 49 |
+
"""
|
| 50 |
+
Append input/outputs and parameters to a JSON Lines file using a thread lock
|
| 51 |
+
to avoid concurrent writes from different users.
|
| 52 |
+
"""
|
| 53 |
+
logger.info(f"Saving feedback to {feedback_file}")
|
| 54 |
+
|
| 55 |
+
with scheduler.lock:
|
| 56 |
+
try:
|
| 57 |
+
with feedback_file.open("a") as f:
|
| 58 |
+
f.write(json.dumps({
|
| 59 |
+
"input": input,
|
| 60 |
+
"output": output,
|
| 61 |
+
}))
|
| 62 |
+
f.write("\n")
|
| 63 |
+
logger.info("Feedback saved successfully")
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.error(f"Error saving feedback: {str(e)}")
|
| 66 |
+
|
| 67 |
+
|
| 68 |
def load_model():
|
| 69 |
print("[INFO] Loading model... This may take a minute on Spaces")
|
| 70 |
pipe = pipeline(
|
|
|
|
| 86 |
outputs = pipe(text)
|
| 87 |
scores= [x["score"] for x in outputs]
|
| 88 |
tokens= [x["token_str"] for x in outputs]
|
| 89 |
+
result={label: float(prob) for label, prob in zip(tokens, scores)}
|
| 90 |
+
# Save feedback with additional metadata
|
| 91 |
+
save_feedback(
|
| 92 |
+
text,
|
| 93 |
+
result
|
| 94 |
+
)
|
| 95 |
+
return result
|
| 96 |
|
| 97 |
# Create Gradio interface
|
| 98 |
with gr.Blocks() as demo:
|