File size: 5,428 Bytes
c03e3f1
206d01d
47e8e86
4d65f31
c03e3f1
 
71e05d9
c03e3f1
 
54e184f
c03e3f1
 
a1c1394
c03e3f1
5e0f846
9a26856
c03e3f1
 
 
 
 
 
 
 
 
b2e3a42
c03e3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07463bb
c03e3f1
 
 
 
 
 
 
 
 
 
 
a1c1394
 
e4f1a57
 
 
db008a4
e4f1a57
c03e3f1
 
e4f1a57
db008a4
 
 
c03e3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e3a42
c03e3f1
 
 
 
ca0589b
00c1f02
5e0f846
c03e3f1
 
 
 
00b549c
c03e3f1
 
f170a4b
c03e3f1
 
 
 
 
f1eff82
00b549c
c03e3f1
 
 
 
 
59f198e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
"""bg_removersarvm.ipynbdflkldfdfdf
sdsds
Automatically generated by Colabcdsdcsoratofdfdfdry.dsds

Original file is located at
    https://colab.research.google.com/drive/17ZfqfkhZV5xSwXdHblThSQM_Yna-0J22d
"""

import cv2
import gradio as gr
import os
import functools
from PIL import Image
from rembg import remove 
from io import BytesIO
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import requests
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *

#Helpers
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms fdf
    '''
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image


transform =  transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

@functools.lru_cache()
def get_url_im(t):
    user_agent = {'User-agent': 'gradio-app'}
    response = requests.get(t, headers=user_agent)
    return (BytesIO(response.content))


def load_image(im_path, hypar):
    # im_path = BytesIO(requests.get(im_path).content)
    
    im_path = get_url_im(im_path)
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im,255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape


def build_model(hypar,device):
    net = hypar["model"]#GOSNETINC(3,1)

    # convert to half precision
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()
    return net


def predict(net,  inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)


    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable

    ds_val = net(inputs_val_v)[0] # list of 6 results

    pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W    # we want the first one which is the most accurate prediction

    ## recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi) # max = 1

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need

# Set Parameters
hypar = {} # paramters for inferencing


hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision

##  choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0

hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size

## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation

hypar["model"] = ISNetDIS()

 # Build Model
net = build_model(hypar, device)


def inference(image):
  image_path = image
  image_tensor, orig_size = load_image(image_path, hypar)
  mask = predict(net, image_tensor, orig_size, hypar, device)

  pil_mask = Image.fromarray(mask).convert('L')
  im_rgb = Image.open(get_url_im(image)).convert("RGB")
  imrgba1 = im_rgb.copy()
  imrgba2 = remove(imrgba1,210)

  im_rgba = im_rgb.copy()
  im_rgba.putalpha(pil_mask)

  return im_rgba, imrgba2 , im_rgba


title = "Bg remover for sarvm catalog"
description = "Bg remover for sarvm catalog"
article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>"

interface = gr.Interface(
    fn=inference,
    inputs=gr.Textbox(label="Text or Image URL", interactive=True),
    outputs=["image","image","image"],
    title=title,
    description=description,
    article=article,
    allow_flagging='never',
    cache_examples=False,
    ).queue().launch(show_error=True, share = True)