File size: 10,293 Bytes
c15280f 6de323d c15280f 6de323d c15280f 6de323d 5bdf75f 6de323d 5bdf75f 6de323d 5bdf75f 6de323d 258e903 6de323d 5bdf75f 6de323d 5bdf75f 6de323d 5bdf75f 6de323d c15280f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from threading import Thread
from pathlib import Path
import gradio as gr
import subprocess
import shutil
import time
import copy
import glob
import json
import os
current_dir = Path(__file__).resolve().parent
MODELOS = current_dir / "modelos"
SEGMENTS_DIRNAME = current_dir / "segments"
INFERENCE_OUTPUT_DIRNAME = current_dir / "inference_output"
def slice_audio(filepath):
assert os.path.exists(filepath), f"No se ha encontrado {filepath}."
filename, extension = os.path.splitext(filepath)
filename = filename.split("/")[-1]
os.makedirs(SEGMENTS_DIRNAME, exist_ok=True)
output_pattern = os.path.join(SEGMENTS_DIRNAME, f"{filename}_%d{extension}")
os.system(f"ffmpeg -i {filepath} -f segment -segment_time 75 -c copy {output_pattern}")
def get_container_format(filename):
command = ["ffprobe", "-v", "error", "-select_streams", "v:0", "-show_entries", "format=format_name", "-of", "default=noprint_wrappers=1:nokey=1", filename]
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
if error:
raise ValueError(f"Error: {error.decode()}")
return output.decode().strip()
def concatenate_segments(foldername, final_filename):
foldername = Path(foldername)
assert foldername.exists
all_segs = [f for f in sorted(foldername.glob("**/*")) if f.is_file()]
with open(foldername / "concat_list.txt", "w") as f:
for seg in all_segs:
f.write('file ' + str(seg.absolute()) + "\n")
os.system(f"ffmpeg -f concat -safe 0 -i {foldername}/concat_list.txt -codec copy {foldername}/{final_filename}")
def cleanup_dirs():
for dirname in (SEGMENTS_DIRNAME, INFERENCE_OUTPUT_DIRNAME):
dir_path = Path(dirname)
if dir_path.exists():
shutil.rmtree(dir_path)
def get_speakers():
global speakers
speakers = []
for _, dirs, _ in os.walk(MODELOS):
for folder in dirs:
cur_speaker = {}
g = glob.glob(os.path.join(MODELOS, folder, 'G_*.pth'))
if not len(g):
continue
cur_speaker["model_path"] = g[0]
cur_speaker["model_folder"] = folder
cur_speaker["cluster_path"] = ""
cfg = glob.glob(os.path.join(MODELOS, folder, '*.json'))
if not len(cfg):
continue
cur_speaker["cfg_path"] = cfg[0]
with open(cur_speaker["cfg_path"]) as f:
try:
cfg_json = json.loads(f.read())
except Exception as e:
print("Archivo json malformado en" + folder)
for name, i in cfg_json["spk"].items():
cur_speaker["name"] = name
cur_speaker["id"] = i
if not name.startswith('.'):
speakers.append(copy.copy(cur_speaker))
return sorted(speakers, key=lambda x: x["name"].lower())
def run_inference(speaker, seg_path, f0_method, transpose, noise_scale, cluster_ratio):
model_path = speaker["model_path"]
config_path = speaker["cfg_path"]
cluster_path = speaker["cluster_path"]
cluster_args = f"-k {cluster_path} -r {cluster_ratio}" if cluster_path and cluster_ratio > 0 else ""
inference_cmd = f"svc infer {seg_path.absolute()} -m {model_path} -c {config_path} {cluster_args} -t {transpose} --f0-method {f0_method} -n {noise_scale} -o {INFERENCE_OUTPUT_DIRNAME}/{seg_path.name} --no-auto-predict-f0"
result = subprocess.run(inference_cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.stderr:
if "AttributeError" in result.stderr:
return None, gr.Textbox.update("⚠️ Modelo SVC incompatible.")
if not list(Path(SEGMENTS_DIRNAME).glob("*")):
return None, gr.Textbox.update("⚠️ Error.")
def convert(speaker_box, audio):
speaker = next((x for x in speakers if x["name"] == speaker_box), None)
if not speaker:
return None, gr.Textbox.update("⚠️ Selecciona un modelo.")
if not audio:
return None, gr.Textbox.update("⚠️ Sube un audio.")
file_path = os.path.join(os.getcwd(), str(audio))
model_path = os.path.join(os.getcwd(), speaker["model_path"])
config_path = os.path.join(os.getcwd(), speaker["cfg_path"])
cluster_path = os.path.join(os.getcwd(), speaker["cluster_path"])
f0_method = "crepe"
transpose = 0
noise_scale = 0.4
cluster_ratio = 0
if os.path.exists(SEGMENTS_DIRNAME) or os.path.exists(INFERENCE_OUTPUT_DIRNAME):
cleanup_dirs()
slice_audio(file_path)
os.makedirs("inference_output", exist_ok=True)
all_segs_paths = sorted(Path(SEGMENTS_DIRNAME).glob("*"))
ts0 = time.time()
for seg_path in all_segs_paths:
run_inference(speaker, seg_path, f0_method, transpose, noise_scale, cluster_ratio)
final_filename = f"output{Path(file_path).suffix}"
concatenate_segments(INFERENCE_OUTPUT_DIRNAME, final_filename)
shutil.move(Path(INFERENCE_OUTPUT_DIRNAME, final_filename), Path(final_filename))
cleanup_dirs()
os.remove(file_path)
ts1 = time.time()
tiempo1 = int(ts1 - ts0)
return final_filename, gr.Textbox.update("👌 ¡Voz cambiada!", label=f"Tiempo total: {tiempo1} segundos")
def clear():
shutil.rmtree(SEGMENTS_DIRNAME, ignore_errors=True)
shutil.rmtree(INFERENCE_OUTPUT_DIRNAME, ignore_errors=True)
tmp_files = glob.glob("*.tmp")
for f in tmp_files:
os.remove(f)
return gr.Dropdown.update(value="Elige un modelo de voz"), None, gr.Textbox.update("🗑️ Datos borrados.", label=f"Información")
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
footer {
visibility: hidden;
display: none;
}
.center-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
"""
with gr.Blocks(
css=css,
title="VoiceIt! - Pavloh",
theme=gr.themes.Soft(
primary_hue="cyan",
secondary_hue="blue",
radius_size="lg",
text_size="lg"
).set(loader_color="#0B0F19", shadow_drop='*shadow_drop_lg', block_border_width="3px")
) as pavloh:
gr.HTML(
"""
<div class="center-container">
<img src="https://i.imgur.com/DendqCA.png" style="width: 300px; height: auto;"/><br>
<div style="display: flex; justify-content: center;">
<a href="https://github.com/ImPavloh/voiceit/blob/main/LICENSE" target="_blank">
<img src="https://img.shields.io/github/license/impavloh/voiceit?style=for-the-badge&logo=github&logoColor=white" alt="Licencia">
</a>
<a href="https://github.com/impavloh/voiceit" target="_blank">
<img src="https://img.shields.io/badge/repositorio-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="GitHub">
</a>
<form action="https://www.paypal.com/donate" method="post" target="_blank">
<input type="hidden" name="hosted_button_id" value="6FPWP9AWEKSWJ" />
<input type="image" src="https://img.shields.io/badge/apoyar-%2300457C.svg?style=for-the-badge&logo=paypal&logoColor=white" border="0" name="submit" alt="Botón donar con PayPal" />
<img alt="" border="0" src="https://www.paypal.com/es_ES/i/scr/pixel.gif" width="1" height="1" />
</form></center>
<a href="https://twitter.com/impavloh" target="_blank">
<img src="https://img.shields.io/badge/Seguir-%231DA1F2.svg?style=for-the-badge&logo=twitter&logoColor=white" alt="Twitter">
</a>
</div>
<div style="display: inline-flex;align-items: center;gap: 0.8rem;font-size: 1.75rem;">
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">🗣️ VoiceIt! - Un proyecto de <a style="text-decoration: underline;" href="https://twitter.com/impavloh">Pavloh</a></h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">Cambia la voz de audios utilizando modelos pre-entrenados de streamers.</p>
</div>
"""
)
with gr.Row(elem_id="1").style(equal_height=True):
with gr.Column():
d1 = gr.Dropdown([x["name"] for x in get_speakers()], label="📦 Selecciona un modelo", value="Elige un modelo de voz")
audio = gr.Audio(label="🗣️ Sube un audio", type="filepath")
with gr.Column():
a2 = gr.Audio(label="🔊 Resultado", type="filepath")
t1 = gr.Textbox(type="text", label="📄 Información", value="Elige un modelo y un audio para cambiar la voz.")
with gr.Row():
b0 = gr.Button("🗑️ Borrar")
b1 = gr.Button("🎤 Cambiar voz",variant="primary")
b0.click(clear, outputs=[d1, audio, t1])
b1.click(convert, inputs=[d1, audio], outputs=[a2, t1])
with gr.Row():
with gr.Accordion(label="Licencia", open=False):
gr.HTML("""
<center>
<p>
<i> Ten en cuenta que los audios deben contener solamente una voz y estar libres de ruido o música de fondo. </i>
</p>
<p>
<i> Asegúrate de que el nombre del archivo no contenga espacios ni símbolos raros, utilizando solo caracteres alfanuméricos y guiones bajos (_) para separar palabras si es necesario. </i>
</p>
<p>
<i> En caso de que tarde más de 5 minutos procesar el audio, es posible que se produzca un error debido a los límites del servidor. En ese caso, tendrás que utilizar VoiceIt localmente usando tus recursos. </i>
</p>
<p>
<i> Al utilizar este sitio web, aceptas la <a style="text-decoration: underline;" href="https://github.com/ImPavloh/voiceit/blob/main/LICENSE">licencia</a> y <a style="text-decoration: underline;" href="https://github.com/ImPavloh/voiceit/blob/main/TERMINOS_DE_USO.txt">condiciones de uso</a>. </i>
</p>
</center>
""")
if __name__ == "__main__":
pavloh.launch(enable_queue=True) |