Spaces:
Sleeping
Sleeping
# test | |
import numpy as np | |
import albumentations as A | |
from src.utils import get_images_list, load_image, load_augmentations_config | |
def test_get_images_list(): | |
images_list = get_images_list("images") | |
assert isinstance(images_list, list) | |
assert len(images_list) > 0 | |
assert isinstance(images_list[0], str) | |
def test_load_image(): | |
images_list = get_images_list("images") | |
for image_name in images_list: | |
image = load_image(image_name, path_to_folder="images", bgr2rgb=True) | |
assert len(image.shape) == 3, f"error in {image_name}" | |
assert image.shape[2] == 3, f"error in {image_name}" | |
assert image.max() <= 255, f"error in {image_name}" | |
assert image.min() >= 0, f"error in {image_name}" | |
def test_load_augmentations_config(): | |
image = np.random.randint(0, 255, (100, 100, 3)).astype(np.uint8) | |
placeholder_params = { | |
"image_width": image.shape[1], | |
"image_height": image.shape[0], | |
"image_half_width": int(image.shape[1] / 2), | |
"image_half_height": int(image.shape[0] / 2), | |
} | |
augmentations = load_augmentations_config( | |
placeholder_params, path_to_config="configs/augmentations.json" | |
) | |
for transform_name in augmentations.keys(): | |
if transform_name in [ | |
"CenterCrop", | |
"RandomCrop", | |
"RandomResizedCrop", | |
"Resize", | |
]: | |
param_values = {"p": 1.0, "height": 10, "width": 10} | |
elif transform_name in ["RandomSizedCrop"]: | |
param_values = { | |
"p": 1.0, | |
"height": 10, | |
"width": 10, | |
"min_max_height": (50, 50), | |
} | |
elif transform_name in ["Crop"]: | |
param_values = {"p": 1.0, "x_max": 10, "y_max": 10} | |
else: | |
param_values = {"p": 1.0} | |
transform = getattr(A, transform_name)(**param_values) | |
transformed_image = transform(image=image)["image"] | |
assert len(transformed_image.shape) == 3, f"error in {str(transform)}" | |
assert transformed_image.shape[2] == 3, f"error in {str(transform)}" | |
assert transformed_image.max() <= 255, f"error in {str(transform)}" | |
assert transformed_image.min() >= 0, f"error in {str(transform)}" | |