Spaces:
Runtime error
Runtime error
# app.py — UI-TARS demo (OSS disabled) | |
import base64 | |
import json | |
import ast | |
import os | |
import re | |
import io | |
import math | |
from datetime import datetime | |
import gradio as gr | |
from PIL import ImageDraw | |
# ========================= | |
# OpenAI client (optional) | |
# ========================= | |
# If OPENAI_API_KEY is set we will use OpenAI for parsing the model output text. | |
# If ENDPOINT_URL is set, we'll point the OpenAI client at that base URL (advanced use). | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
ENDPOINT_URL = os.getenv("ENDPOINT_URL") # optional | |
MODEL_NAME = os.getenv("MODEL_NAME", "gpt-4o-mini") # safe default instead of "tgi" | |
client = None | |
if OPENAI_API_KEY: | |
try: | |
from openai import OpenAI | |
if ENDPOINT_URL: | |
client = OpenAI(api_key=OPENAI_API_KEY, base_url=ENDPOINT_URL) | |
else: | |
client = OpenAI(api_key=OPENAI_API_KEY) | |
print("✅ OpenAI client initialized.") | |
except Exception as e: | |
print(f"⚠️ OpenAI client not available: {e}") | |
else: | |
print("ℹ️ OPENAI_API_KEY not set. Running without OpenAI parsing.") | |
# ========================= | |
# UI-TARS prompt | |
# ========================= | |
DESCRIPTION = "[UI-TARS](https://github.com/bytedance/UI-TARS)" | |
prompt = ( | |
"Output only the coordinate of one box in your response. " | |
"Return a tuple like (x,y) with values in 0..1000 for x and y. " | |
"Do not include any extra text. " | |
) | |
# ========================= | |
# OSS (Aliyun) — DISABLED | |
# ========================= | |
# The original demo used Aliyun OSS (oss2) to upload images/metadata. | |
# We disable it fully so no ENV like BUCKET / ENDPOINT is required. | |
bucket = None | |
print("⚠️ OSS integration disabled: skipping Aliyun storage.") | |
def draw_point_area(image, point): | |
"""Draw a red point+circle at a (0..1000, 0..1000) coordinate on the given PIL image.""" | |
if not point: | |
return image | |
radius = min(image.width, image.height) // 15 | |
x = round(point[0] / 1000 * image.width) | |
y = round(point[1] / 1000 * image.height) | |
drawer = ImageDraw.Draw(image) | |
drawer.ellipse((x - radius, y - radius, x + radius, y + radius), outline="red", width=2) | |
drawer.ellipse((x - 2, y - 2, x + 2, y + 2), fill="red") | |
return image | |
def resize_image(image): | |
"""Resize extremely large screenshots to keep compute stable.""" | |
max_pixels = 6000 * 28 * 28 | |
if image.width * image.height > max_pixels: | |
max_pixels = 2700 * 28 * 28 | |
else: | |
max_pixels = 1340 * 28 * 28 | |
resize_factor = math.sqrt(max_pixels / (image.width * image.height)) | |
width, height = int(image.width * resize_factor), int(image.height * resize_factor) | |
return image.resize((width, height)) | |
def upload_images(session_id, image, result_image, query): | |
"""No-op when OSS is disabled. Keeps API stable.""" | |
if bucket is None: | |
print("↪️ Skipped OSS upload (no bucket configured).") | |
return | |
img_path = f"{session_id}.png" | |
result_img_path = f"{session_id}-draw.png" | |
metadata = dict( | |
query=query, | |
resize_image=img_path, | |
result_image=result_img_path, | |
session_id=session_id, | |
) | |
img_bytes = io.BytesIO() | |
image.save(img_bytes, format="png") | |
bucket.put_object(img_path, img_bytes.getvalue()) | |
rst_img_bytes = io.BytesIO() | |
result_image.save(rst_img_bytes, format="png") | |
bucket.put_object(result_img_path, rst_img_bytes.getvalue()) | |
bucket.put_object(f"{session_id}.json", json.dumps(metadata).encode("utf-8")) | |
print("✅ (would) upload images — skipped unless bucket configured") | |
def run_ui(image, query, session_id, is_example_image): | |
"""Main inference path: builds the message, asks the model for (x,y), draws, returns results.""" | |
click_xy = None | |
images_during_iterations = [] | |
width, height = image.width, image.height | |
# Resize for throughput + encode | |
image = resize_image(image) | |
buf = io.BytesIO() | |
image.save(buf, format="png") | |
base64_image = base64.standard_b64encode(buf.getvalue()).decode("utf-8") | |
# Prepare prompt for an LLM that returns '(x,y)' | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}, | |
{"type": "text", "text": prompt + query}, | |
], | |
} | |
] | |
# If OpenAI client is present, ask it to parse coordinates. Otherwise we return a safe default. | |
output_text = "" | |
if client is not None: | |
try: | |
resp = client.chat.completions.create( | |
model=MODEL_NAME, | |
messages=messages, | |
temperature=1.0, | |
top_p=0.7, | |
max_tokens=128, | |
frequency_penalty=1, | |
stream=False, | |
) | |
output_text = resp.choices[0].message.content or "" | |
except Exception as e: | |
output_text = "" | |
print(f"⚠️ OpenAI call failed: {e}") | |
# Extract "(x,y)" from the text using regex | |
pattern = r"\((\d+,\s*\d+)\)" | |
match = re.search(pattern, output_text) | |
if match: | |
coordinates = match.group(1) | |
try: | |
click_xy = ast.literal_eval(coordinates) # (x, y) with 0..1000 scale | |
except Exception: | |
click_xy = None | |
# If we still don't have coordinates, fall back to center | |
if click_xy is None: | |
click_xy = (500, 500) | |
# Draw result + convert to absolute pixel coords for display | |
result_image = draw_point_area(image.copy(), click_xy) | |
images_during_iterations.append(result_image) | |
abs_xy = (round(click_xy[0] / 1000 * width), round(click_xy[1] / 1000 * height)) | |
# Upload artifacts only for real (non-example) inputs | |
if str(is_example_image) == "False": | |
upload_images(session_id, image, result_image, query) | |
return images_during_iterations, str(abs_xy) | |
def update_vote(vote_type, image, click_image, prompt_text, is_example): | |
"""Simple feedback hook (no external upload when OSS disabled).""" | |
if vote_type == "upvote": | |
return "Everything good" | |
if is_example == "True": | |
return "Do nothing for example" | |
# Example gallery returns file paths; we do nothing here | |
return "Thank you for your feedback!" | |
# Demo examples | |
examples = [ | |
["./examples/solitaire.png", "Play the solitaire collection", True], | |
["./examples/weather_ui.png", "Open map", True], | |
["./examples/football_live.png", "click team 1 win", True], | |
["./examples/windows_panel.png", "switch to documents", True], | |
["./examples/paint_3d.png", "rotate left", True], | |
["./examples/finder.png", "view files from airdrop", True], | |
["./examples/amazon.jpg", "Search bar at the top of the page", True], | |
["./examples/semantic.jpg", "Home", True], | |
["./examples/accweather.jpg", "Select May", True], | |
["./examples/arxiv.jpg", "Home", True], | |
["./examples/health.jpg", "text labeled by 2023/11/26", True], | |
["./examples/ios_setting.png", "Turn off Do not disturb.", True], | |
] | |
title_markdown = """ | |
# UI-TARS Pioneering Automated GUI Interaction with Native Agents | |
[[🤗Model](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT)] [[⌨️Code](https://github.com/bytedance/UI-TARS)] [[📑Paper](https://github.com/bytedance/UI-TARS/blob/main/UI_TARS_paper.pdf)] [🏄[Midscene (Browser Automation)](https://github.com/web-infra-dev/Midscene)] [🫨[Discord](https://discord.gg/txAE43ps)] | |
""" | |
tos_markdown = """ | |
### Terms of use | |
This demo is governed by the original license of UI-TARS. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, including hate speech, violence, pornography, deception, etc. (注:本演示受UI-TARS的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。) | |
""" | |
learn_more_markdown = """ | |
### License | |
Apache License 2.0 | |
""" | |
code_adapt_markdown = """ | |
### Acknowledgments | |
The app code is modified from [ShowUI](https://huggingface.co/spaces/showlab/ShowUI) | |
""" | |
block_css = """ | |
#buttons button { min-width: min(120px,100%); } | |
#chatbot img { | |
max-width: 80%; | |
max-height: 80vh; | |
width: auto; | |
height: auto; | |
object-fit: contain; | |
} | |
""" | |
def build_demo(): | |
with gr.Blocks(title="UI-TARS Demo", theme=gr.themes.Default(), css=block_css) as demo: | |
state_session_id = gr.State(value=None) | |
gr.Markdown(title_markdown) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
imagebox = gr.Image(type="pil", label="Input Screenshot") | |
textbox = gr.Textbox( | |
show_label=True, | |
placeholder="Enter an instruction and press Submit", | |
label="Instruction", | |
) | |
submit_btn = gr.Button(value="Submit", variant="primary") | |
with gr.Column(scale=6): | |
output_gallery = gr.Gallery(label="Output with click", object_fit="contain", preview=True) | |
gr.HTML( | |
""" | |
<p><strong>Notice:</strong> The <span style="color: red;">red point</span> with a circle on the output image represents the predicted coordinates for a click.</p> | |
""" | |
) | |
with gr.Row(): | |
output_coords = gr.Textbox(label="Final Coordinates") | |
image_size = gr.Textbox(label="Image Size") | |
gr.HTML("<p><strong>Expected result or not? help us improve! ⬇️</strong></p>") | |
with gr.Row(elem_id="action-buttons", equal_height=True): | |
upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary") | |
downvote_btn = gr.Button(value="👎 Wrong coordinates!", variant="secondary") | |
clear_btn = gr.Button(value="🗑️ Clear", interactive=True) | |
with gr.Column(scale=3): | |
gr.Examples( | |
examples=[[e[0], e[1]] for e in examples], | |
inputs=[imagebox, textbox], | |
outputs=[textbox], | |
examples_per_page=3, | |
) | |
is_example_dropdown = gr.Dropdown( | |
choices=["True", "False"], value="False", visible=False, label="Is Example Image", | |
) | |
def set_is_example(query): | |
for _, example_query, is_example in examples: | |
if query.strip() == example_query.strip(): | |
return str(is_example) | |
return "False" | |
textbox.change(set_is_example, inputs=[textbox], outputs=[is_example_dropdown]) | |
def on_submit(image, query, is_example_image): | |
if image is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S") | |
images_during_iterations, click_coords = run_ui(image, query, session_id, is_example_image) | |
return images_during_iterations, click_coords, session_id, f"{image.width}x{image.height}" | |
submit_btn.click( | |
on_submit, | |
[imagebox, textbox, is_example_dropdown], | |
[output_gallery, output_coords, state_session_id, image_size], | |
) | |
clear_btn.click( | |
lambda: (None, None, None, None, None, None), | |
inputs=None, | |
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id, image_size], | |
queue=False, | |
) | |
upvote_btn.click( | |
lambda image, click_image, prompt_text, is_example: | |
update_vote("upvote", image, click_image, prompt_text, is_example), | |
inputs=[imagebox, output_gallery, textbox, is_example_dropdown], | |
outputs=[], | |
queue=False, | |
) | |
downvote_btn.click( | |
lambda image, click_image, prompt_text, is_example: | |
update_vote("downvote", image, click_image, prompt_text, is_example), | |
inputs=[imagebox, output_gallery, textbox, is_example_dropdown], | |
outputs=[], | |
queue=False, | |
) | |
gr.Markdown(tos_markdown) | |
gr.Markdown(learn_more_markdown) | |
gr.Markdown(code_adapt_markdown) | |
return demo | |
if __name__ == "__main__": | |
demo = build_demo() | |
demo.queue(api_open=False).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
debug=True, | |
) | |