Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,28 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
if example:
|
12 |
-
ner_results = nlp(example)
|
13 |
-
st.json(ner_results)
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
+
# from transformers import pipeline
|
4 |
+
|
5 |
+
# tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
6 |
+
# model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
7 |
+
# nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
8 |
+
|
9 |
+
# example = st.text_area("Enter text: ")
|
10 |
+
|
11 |
+
# if example:
|
12 |
+
# ner_results = nlp(example)
|
13 |
+
# st.json(ner_results)
|
14 |
from transformers import pipeline
|
15 |
|
16 |
+
# Load pre-trained NER model
|
17 |
+
ner = pipeline('ner', model='bert-base-cased', tokenizer='bert-base-cased')
|
18 |
+
|
19 |
+
# Define input text
|
20 |
+
input_text = "The Mona Lisa is a 16th century portrait painted by Leonardo da Vinci."
|
21 |
+
|
22 |
+
# Call the NER pipeline on the input text
|
23 |
+
ner_results = ner(input_text)
|
24 |
|
25 |
+
# Print the named entities and their labels
|
26 |
+
for result in ner_results:
|
27 |
+
print(result['word'], result['entity'])
|
28 |
|
|
|
|
|
|