IJAB commited on
Commit
25bed32
·
1 Parent(s): 016fc30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -9
app.py CHANGED
@@ -1,13 +1,28 @@
1
- import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForTokenClassification
 
 
 
 
 
 
 
 
 
 
 
3
  from transformers import pipeline
4
 
5
- tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
6
- model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
7
- nlp = pipeline("ner", model=model, tokenizer=tokenizer)
 
 
 
 
 
8
 
9
- example = st.text_area("Enter text: ")
 
 
10
 
11
- if example:
12
- ner_results = nlp(example)
13
- st.json(ner_results)
 
1
+ # import streamlit as st
2
+ # from transformers import AutoTokenizer, AutoModelForTokenClassification
3
+ # from transformers import pipeline
4
+
5
+ # tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
6
+ # model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
7
+ # nlp = pipeline("ner", model=model, tokenizer=tokenizer)
8
+
9
+ # example = st.text_area("Enter text: ")
10
+
11
+ # if example:
12
+ # ner_results = nlp(example)
13
+ # st.json(ner_results)
14
  from transformers import pipeline
15
 
16
+ # Load pre-trained NER model
17
+ ner = pipeline('ner', model='bert-base-cased', tokenizer='bert-base-cased')
18
+
19
+ # Define input text
20
+ input_text = "The Mona Lisa is a 16th century portrait painted by Leonardo da Vinci."
21
+
22
+ # Call the NER pipeline on the input text
23
+ ner_results = ner(input_text)
24
 
25
+ # Print the named entities and their labels
26
+ for result in ner_results:
27
+ print(result['word'], result['entity'])
28