# import streamlit as st | |
# from transformers import pipeline | |
# # Load NER model | |
# ner_model = pipeline("ner", model="has-abi/distilBERT-finetuned-resumes-sections") | |
# # Create Streamlit app | |
# st.title("Named Entity Recognition with Hugging Face models") | |
# # Get user input | |
# text_input = st.text_input("Enter some text:") | |
# # Run NER on user input | |
# if text_input: | |
# results = ner_model(text_input) | |
# for result in results: | |
# st.write(f"{result['word']}: {result['entity']}") | |
import streamlit as st | |
from transformers import pipeline | |
# Set up Resuméner pipeline | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6") | |
# Create Streamlit app | |
st.title("Resuméner") | |
st.write("Upload your resume below to generate a summary.") | |
# Upload resume file | |
uploaded_file = st.file_uploader("Choose a file") | |
if uploaded_file is not None: | |
# Read resume file contents | |
resume_text = uploaded_file.read().decode("utf-8") | |
# Generate summary using Resuméner pipeline | |
summary = summarizer(resume_text, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] | |
# Display summary | |
st.write("Summary:") | |
st.write(summary) | |