Spaces:
Runtime error
Runtime error
textstreamer
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from peft import AutoPeftModelForCausalLM
|
2 |
-
from transformers import AutoTokenizer
|
3 |
-
import gradio as gr
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
@@ -12,19 +12,19 @@ model = AutoPeftModelForCausalLM.from_pretrained(
|
|
12 |
)
|
13 |
tokenizer = AutoTokenizer.from_pretrained("EITD/lora_model_1")
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
def respond(
|
30 |
message,
|
@@ -65,30 +65,35 @@ def respond(
|
|
65 |
return_tensors = "pt",
|
66 |
)
|
67 |
|
68 |
-
outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True,
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
"""
|
74 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
75 |
"""
|
76 |
-
demo = gr.ChatInterface(
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
)
|
91 |
|
92 |
|
93 |
-
if __name__ == "__main__":
|
94 |
-
|
|
|
1 |
from peft import AutoPeftModelForCausalLM
|
2 |
+
from transformers import AutoTokenizer, TextStreamer
|
3 |
+
# import gradio as gr
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
|
|
12 |
)
|
13 |
tokenizer = AutoTokenizer.from_pretrained("EITD/lora_model_1")
|
14 |
|
15 |
+
messages = [{"role": "user", "content": "Continue the Fibonacci sequence: 1, 1, 2, 3, 5, 8,"},]
|
16 |
|
17 |
+
inputs = tokenizer.apply_chat_template(
|
18 |
+
messages,
|
19 |
+
tokenize = True,
|
20 |
+
add_generation_prompt = True, # Must add for generation
|
21 |
+
return_tensors = "pt",
|
22 |
+
)
|
23 |
|
24 |
+
outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True,
|
25 |
+
temperature = 1.5, min_p = 0.1)
|
26 |
|
27 |
+
print(tokenizer.batch_decode(outputs))
|
28 |
|
29 |
def respond(
|
30 |
message,
|
|
|
65 |
return_tensors = "pt",
|
66 |
)
|
67 |
|
68 |
+
# outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True,
|
69 |
+
# temperature = temperature, min_p = top_p)
|
70 |
+
|
71 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
72 |
+
model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = max_tokens,
|
73 |
+
use_cache = True, temperature = temperature, min_p = top_p)
|
74 |
+
|
75 |
+
# return tokenizer.batch_decode(outputs)
|
76 |
|
77 |
|
78 |
"""
|
79 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
80 |
"""
|
81 |
+
# demo = gr.ChatInterface(
|
82 |
+
# respond,
|
83 |
+
# additional_inputs=[
|
84 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
85 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
86 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
87 |
+
# gr.Slider(
|
88 |
+
# minimum=0.1,
|
89 |
+
# maximum=1.0,
|
90 |
+
# value=0.95,
|
91 |
+
# step=0.05,
|
92 |
+
# label="Top-p (nucleus sampling)",
|
93 |
+
# ),
|
94 |
+
# ],
|
95 |
+
# )
|
96 |
|
97 |
|
98 |
+
# if __name__ == "__main__":
|
99 |
+
# demo.launch()
|