Spaces:
Sleeping
Sleeping
File size: 7,447 Bytes
06faff1 44e7320 fa1e3ad 93be3f3 1051212 b52ede6 7074721 06faff1 9424917 fa1e3ad 9424917 b52ede6 dfbe477 01139ed b52ede6 9424917 86aed5d cfd2f6b b884855 cfd2f6b 86aed5d cfd2f6b 86aed5d cfd2f6b b52ede6 86aed5d b52ede6 1051212 06faff1 b52ede6 1051212 b52ede6 bc61590 a40135d bc61590 b52ede6 0222536 fa1e3ad b52ede6 1c4332a d3b24ed fa1e3ad b52ede6 d3b24ed b52ede6 fa1e3ad b52ede6 fa1e3ad b52ede6 1c4332a b52ede6 6903ce6 86aed5d 6903ce6 b52ede6 fa1e3ad 6903ce6 fa1e3ad 6903ce6 2e0be03 6475632 b1c35dc b52ede6 6475632 86aed5d b52ede6 86aed5d a40135d 1c4332a fa1e3ad 9a4695e b52ede6 b1c35dc 01139ed b52ede6 fa1e3ad 01139ed fa1e3ad 9a4695e a40135d 05bbd5c 01139ed a40135d 86aed5d b52ede6 86aed5d 06faff1 2f4c490 86aed5d b52ede6 2f4c490 86aed5d b52ede6 60870ef 86aed5d 05bbd5c 6903ce6 86aed5d 6903ce6 a40135d 9424917 b52ede6 86aed5d cfd2f6b 86aed5d aad96af 86aed5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
import pandas as pd
import gspread
from gspread_dataframe import set_with_dataframe
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
from collections import Counter
# -------------------- AUTH --------------------
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive"
]
creds = ServiceAccountCredentials.from_json_keyfile_name(
"deep-mile-461309-t8-0e90103411e0.json", scope
)
client = gspread.authorize(creds)
SHEET_URL = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
# -------------------- SELF SOURCED LEADS CONFIG --------------------
SHEET_MAP = {
"Alice": "https://docs.google.com/spreadsheets/d/18qFpkbE2CwVOgiB6Xz4m2Ep7ZA29p5xV/edit?gid=26019131#gid=26019131",
"Bob": "https://docs.google.com/spreadsheets/d/1EKngyAvq_3hzQMAOVame2nO9LKPJEV0d/edit?gid=1655961411#gid=1655961411",
"Charlie": "https://docs.google.com/spreadsheets/d/164OTu1keBC12-5XFUDXMmLOPMkdAjBOM/edit?gid=55672436#gid=55672436",
"Dave": "https://docs.google.com/spreadsheets/d/1m5e6YXxjK62vtBxYGkJSyHpHT7lnirg6/edit?gid=55672436#gid=55672436"
}
def load_self_sourced_leads(rep_name):
if rep_name not in SHEET_MAP:
return pd.DataFrame([{"Error": f"No sheet available for '{rep_name}'"}])
try:
sheet = client.open_by_url(SHEET_MAP[rep_name])
worksheet = sheet.get_worksheet(0)
data = worksheet.get_all_values()
if not data:
return pd.DataFrame([{"Info": "No data available"}])
return pd.DataFrame(data[1:], columns=data[0])
except Exception as e:
return pd.DataFrame([{"Error": str(e)}])
# -------------------- UTILS --------------------
def normalize_columns(cols):
return [c.strip().title() for c in cols]
def load_sheet_df(name):
ws = client.open_by_url(SHEET_URL).worksheet(name)
data = ws.get_all_values()
if not data:
return pd.DataFrame()
raw_header, *rows = data
counts = Counter()
header = []
for col in raw_header:
counts[col] += 1
header.append(f"{col}_{counts[col]}" if counts[col] > 1 else col)
header = normalize_columns(header)
return pd.DataFrame(rows, columns=header)
def get_current_week_range():
today = datetime.now().date()
start = today - timedelta(days=today.weekday())
end = start + timedelta(days=6)
return start, end
def filter_by_week(df, date_col, rep=None):
if date_col not in df.columns:
return pd.DataFrame([{"Error": f"Missing '{date_col}' column"}])
df = df.copy()
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
start, end = get_current_week_range()
m = df[date_col].between(start, end)
if rep:
m &= df.get("Rep", pd.Series()).astype(str) == rep
return df[m]
def filter_by_date(df, date_col, y, m, d, rep=None):
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date"}])
if date_col not in df.columns:
return pd.DataFrame([{"Error": f"Missing '{date_col}' column"}])
df = df.copy()
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date
m = df[date_col] == target
if rep:
m &= df.get("Rep", pd.Series()).astype(str) == rep
return df[m]
def rep_choices(sheet, col="Rep"):
df = load_sheet_df(sheet)
return sorted(df[col].dropna().unique().tolist()) if col in df else []
# -------------------- REPORT FUNCTIONS --------------------
def get_calls(rep=None):
df = load_sheet_df("Calls")
return filter_by_week(df, "Call Date", rep)
def get_appointments(rep=None):
df = load_sheet_df("Appointments")
return filter_by_week(df, "Appointment Date", rep)
def search_calls(y, m, d, rep=None):
df = load_sheet_df("Calls")
return filter_by_date(df, "Call Date", y, m, d, rep)
def search_appointments(y, m, d, rep=None):
df = load_sheet_df("Appointments")
return filter_by_date(df, "Appointment Date", y, m, d, rep)
# -------------------- LEADS --------------------
def get_leads_detail():
return load_sheet_df("AllocatedLeads")
def get_leads_summary():
df = get_leads_detail()
if "Assigned Rep" not in df:
return pd.DataFrame([{"Error": "Missing 'Assigned Rep'"}])
return df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
# -------------------- INSIGHTS --------------------
def compute_insights():
calls = get_calls()
appts = get_appointments()
leads = get_leads_detail()
def top(df, col="Rep"):
if col in df and not df.empty:
vc = df[col].value_counts()
return vc.idxmax() if not vc.empty else "N/A"
return "N/A"
return pd.DataFrame([
{"Metric": "Most Calls This Week", "Rep": top(calls, "Rep")},
{"Metric": "Most Appointments This Week", "Rep": top(appts, "Rep")},
{"Metric": "Most Leads Allocated", "Rep": top(leads, "Assigned Rep")},
])
# -------------------- USER MANAGEMENT --------------------
def load_users():
df = load_sheet_df("Users")
want = [
"Id", "Email", "Name", "Business", "Role",
"Daily Phone Call Target", "Daily Phone Appointment Target",
"Daily Quote Number Target", "Daily Quote Revenue Target",
"Weekly Phone Call Target", "Weekly Phone Appointment Target",
"Weekly Quote Number Target", "Weekly Quote Revenue Target",
"Monthly Phone Call Target", "Monthly Phone Appointment Target",
"Monthly Quote Number Target", "Monthly Quote Revenue Target",
"Monthly Sales Revenue Target"
]
exist = [c for c in want if c in df.columns]
return df[exist]
def save_users(df):
ws = client.open_by_url(SHEET_URL).worksheet("Users")
ws.clear()
set_with_dataframe(ws, df)
return "✅ Users saved!"
# -------------------- GRADIO APP --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# 📊 Graffiti Admin Dashboard")
with gr.Tab("Calls Report"):
rep = gr.Dropdown(choices=rep_choices("Calls"), label="Rep")
btn = gr.Button("Load This Week")
out = gr.Dataframe()
btn.click(get_calls, rep, out)
with gr.Tab("Appointments Report"):
rep2 = gr.Dropdown(choices=rep_choices("Appointments"), label="Rep")
btn2 = gr.Button("Load This Week")
out2 = gr.Dataframe()
btn2.click(get_appointments, rep2, out2)
with gr.Tab("Allocated Leads"):
btn3 = gr.Button("Show Leads")
summary = gr.Dataframe()
details = gr.Dataframe()
btn3.click(lambda: (get_leads_summary(), get_leads_detail()), None, [summary, details])
with gr.Tab("Insights"):
btn4 = gr.Button("Generate Insights")
out4 = gr.Dataframe()
btn4.click(compute_insights, None, out4)
with gr.Tab("User Management"):
users_tbl = gr.Dataframe(value=load_users(), interactive=True)
save_btn = gr.Button("Save Users")
save_msg = gr.Textbox()
save_btn.click(save_users, users_tbl, save_msg)
with gr.Tab("Self Sourced Leads"):
rep_s = gr.Dropdown(choices=list(SHEET_MAP.keys()), label="Rep")
btn_s = gr.Button("Load Leads")
tbl_s = gr.Dataframe()
btn_s.click(load_self_sourced_leads, rep_s, tbl_s)
app.launch()
|