Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,10 @@ import gradio as gr
|
|
19 |
import torch
|
20 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# ๐น Download & load the model from Hugging Face
|
24 |
model_name = "HyperX-Sen/Qwen-2.5-7B-Reasoning"
|
@@ -39,36 +43,44 @@ Respond in the following format:
|
|
39 |
</answer>
|
40 |
"""
|
41 |
|
42 |
-
# ๐น Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def chat_response(user_input, top_p, top_k, temperature, max_length):
|
44 |
messages = [
|
45 |
{"role": "system", "content": f"{SYSTEM_PROMPT}"},
|
46 |
{"role": "user", "content": user_input}
|
47 |
]
|
48 |
-
|
49 |
-
# ๐น Format & tokenize input
|
50 |
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
51 |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
52 |
-
|
53 |
-
# ๐น Generate response
|
54 |
with torch.no_grad():
|
55 |
-
|
56 |
**inputs,
|
57 |
max_length=max_length,
|
58 |
do_sample=True,
|
59 |
top_p=top_p,
|
60 |
top_k=top_k,
|
61 |
-
temperature=temperature
|
|
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
# ๐น Gradio UI
|
69 |
with gr.Blocks() as demo:
|
70 |
-
gr.Markdown("# ๐ค Qwen-2.5-7B-Reasoning Chatbot")
|
71 |
-
|
72 |
with gr.Row():
|
73 |
chatbot = gr.Textbox(label="Model Response", lines=8, interactive=False)
|
74 |
|
@@ -80,11 +92,11 @@ with gr.Blocks() as demo:
|
|
80 |
top_k = gr.Slider(1, 100, value=50, label="Top-k")
|
81 |
temperature = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
|
82 |
max_length = gr.Slider(128, 1024, value=512, label="Max Length")
|
83 |
-
|
84 |
with gr.Row():
|
85 |
submit_button = gr.Button("Generate Response")
|
86 |
-
|
87 |
-
submit_button.click(chat_response, inputs=[user_input, top_p, top_k, temperature, max_length], outputs=[chatbot])
|
88 |
|
89 |
# ๐น Launch the Gradio app
|
90 |
demo.launch()
|
|
|
19 |
import torch
|
20 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
from huggingface_hub import snapshot_download
|
22 |
+
import re
|
23 |
+
|
24 |
+
# ๐น Set torch num threads to max
|
25 |
+
torch.set_num_threads(torch.get_num_threads())
|
26 |
|
27 |
# ๐น Download & load the model from Hugging Face
|
28 |
model_name = "HyperX-Sen/Qwen-2.5-7B-Reasoning"
|
|
|
43 |
</answer>
|
44 |
"""
|
45 |
|
46 |
+
# ๐น Function to extract reasoning and answer
|
47 |
+
def extract_response(full_response):
|
48 |
+
reasoning_match = re.search(r"<reasoning>(.*?)</reasoning>", full_response, re.DOTALL)
|
49 |
+
answer_match = re.search(r"<answer>(.*?)</answer>", full_response, re.DOTALL)
|
50 |
+
reasoning = reasoning_match.group(1).strip() if reasoning_match else ""
|
51 |
+
answer = answer_match.group(1).strip() if answer_match else ""
|
52 |
+
return f"<reasoning>\n{reasoning}\n</reasoning>\n<answer>\n{answer}\n</answer>"
|
53 |
+
|
54 |
+
# ๐น Streaming response function
|
55 |
def chat_response(user_input, top_p, top_k, temperature, max_length):
|
56 |
messages = [
|
57 |
{"role": "system", "content": f"{SYSTEM_PROMPT}"},
|
58 |
{"role": "user", "content": user_input}
|
59 |
]
|
60 |
+
|
|
|
61 |
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
62 |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
63 |
+
|
|
|
64 |
with torch.no_grad():
|
65 |
+
stream = model.generate(
|
66 |
**inputs,
|
67 |
max_length=max_length,
|
68 |
do_sample=True,
|
69 |
top_p=top_p,
|
70 |
top_k=top_k,
|
71 |
+
temperature=temperature,
|
72 |
+
streamer=True
|
73 |
)
|
74 |
+
|
75 |
+
full_response = ""
|
76 |
+
for token in stream:
|
77 |
+
full_response += tokenizer.decode(token, skip_special_tokens=True)
|
78 |
+
yield extract_response(full_response)
|
79 |
|
80 |
# ๐น Gradio UI
|
81 |
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("# ๐ค Qwen-2.5-7B-Reasoning Chatbot (Streaming)")
|
83 |
+
|
84 |
with gr.Row():
|
85 |
chatbot = gr.Textbox(label="Model Response", lines=8, interactive=False)
|
86 |
|
|
|
92 |
top_k = gr.Slider(1, 100, value=50, label="Top-k")
|
93 |
temperature = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
|
94 |
max_length = gr.Slider(128, 1024, value=512, label="Max Length")
|
95 |
+
|
96 |
with gr.Row():
|
97 |
submit_button = gr.Button("Generate Response")
|
98 |
+
|
99 |
+
submit_button.click(chat_response, inputs=[user_input, top_p, top_k, temperature, max_length], outputs=[chatbot], stream=True)
|
100 |
|
101 |
# ๐น Launch the Gradio app
|
102 |
demo.launch()
|