Spaces:
Build error
Build error
File size: 9,862 Bytes
394811b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import difflib
import regtag
import random
def merge_span(words, tags):
spans, span_tags = [], []
current_tag = 'O'
span = []
for w, t in zip(words, tags):
w = w.strip(":-")
if len(w) == 0:
continue
t_info = t.split('-')
if t_info[-1] != current_tag or t_info[0] == 'B':
if len(span) > 0:
spans.append(' '.join(span))
span_tags.append(current_tag)
span = [w]
current_tag = t_info[-1]
else:
span.append(w)
if len(span) > 0:
spans.append(' '.join(span))
span_tags.append(current_tag)
return spans, span_tags
def make_spoken(text, do_split=True):
src, tgt = [], []
if do_split:
chunk_size = random.choice(list(range(0, 10)) + list(range(10, 35)) * 4)
if chunk_size > 0:
text = random.choice(split_chunk_input(text, chunk_size))
else:
text = ''
words, word_tags = merge_span(*regtag.tagging(text))
for span, t in zip(words, word_tags):
if t == 'O':
for w in span.split():
w = w.strip('/.,?!').lower()
if len(w) > 0:
src.append(w)
tgt.append(w)
if random.random() < 0.01:
random_value = regtag.augment.get_random_span()
tgt.append(random_value[0])
src.append(random_value[1].lower())
else:
random_value = regtag.augment.get_random_span(t, span.lower())
tgt.append(random_value[0])
src.append(random_value[1].lower())
if len(src) == 0:
tgt, src = regtag.get_random_span()
src = [src]
tgt = [tgt]
return src, tgt
def split_chunk_input(raw_text, chunk_size):
input_words = raw_text.strip().split()
clean_data = [input_words[i:i + chunk_size] for i in range(0, len(input_words), chunk_size)]
if len(clean_data) > 1:
clean_data = [" ".join(clean_data[i] + clean_data[i + 1]) for i in range(len(clean_data) - 1)]
else:
clean_data = [" ".join(clean_data[0])]
return clean_data
def split_chunk_input(raw_text, chunk_size=40, overlap=10):
input_words = raw_text.strip().split()
part_per_chunk = chunk_size // overlap
clean_data = [input_words[i:i + overlap] for i in range(0, len(input_words), overlap)]
if len(clean_data) > 1:
merge_data = []
for i in range(0, len(clean_data) - 1, part_per_chunk - 1):
merge_data.append(' '.join([y for x in clean_data[i:i + part_per_chunk] for y in x]))
else:
merge_data = [" ".join(clean_data[0])]
return merge_data
def merge_two_chunk(chunk_1, chunk_2, overlap, debug=False):
def extract_phrase_word(phrase):
if phrase.startswith('<mask>'):
return phrase[7:].split('](')[1][:-1].split()
else:
return [phrase]
def has_tag(phrase):
if phrase.startswith('<') and phrase.endswith(')'):
return True
return False
def extract_compete_region(list_phrases, is_head):
if is_head:
list_phrases = list_phrases[::-1]
compete = []
remain = []
handle_count = 0
for phrase in list_phrases:
phrase_word = extract_phrase_word(phrase)
if len(phrase_word) + handle_count <= overlap:
compete.append(phrase)
handle_count += len(phrase_word)
else:
if handle_count < overlap:
remain_compete_count = overlap - handle_count
remain.append(phrase)
if not is_head:
compete.extend(["<delete>({})".format(item) for item in phrase_word[:remain_compete_count]])
else:
compete.extend(
["<delete>({})".format(item) for item in phrase_word[::-1][:remain_compete_count]])
handle_count = overlap
else:
remain.append(phrase)
if is_head:
compete = compete[::-1]
remain = remain[::-1]
return remain, compete
def is_equal(phrase_1, phrase_2):
if phrase_1 == phrase_2:
return True
if extract_phrase_word(phrase_1) == extract_phrase_word(phrase_2):
if phrase_1.startswith('<mask>') and phrase_2.startswith('<mask>'):
return True
return False
def merge_compete(list_1, list_2):
idx_list_1, idx_list_2, combine_phrases = [], [], []
mark_term_complete = []
list_raw = [extract_phrase_word(item) for item in list_1]
list_raw = [y for x in list_raw for y in x]
for idx, phrase in enumerate(list_1):
idx_list_1.extend([idx] * len(extract_phrase_word(phrase)))
for idx, phrase in enumerate(list_2):
idx_list_2.extend([idx] * len(extract_phrase_word(phrase)))
# print(idx_list_1, idx_list_2)
for idx, (idx_1, idx_2) in enumerate(zip(idx_list_1, idx_list_2)):
if list_1[idx_1].startswith('<delete>') or list_2[idx_2].startswith('<delete>'):
continue
elif is_equal(list_1[idx_1], list_2[idx_2]):
# print(list_1[idx_1])
if '1_{}'.format(idx_1) not in mark_term_complete and '2_{}'.format(idx_2) not in mark_term_complete:
if idx <= overlap//2:
combine_phrases.append(list_1[idx_1])
mark_term_complete.append('1_{}'.format(idx_1))
else:
combine_phrases.append(list_2[idx_2])
mark_term_complete.append('2_{}'.format(idx_2))
else:
combine_phrases.append(list_raw[idx])
mark_term_complete.extend(['1_{}'.format(idx_1), '2_{}'.format(idx_2)])
# print(mark_term_complete)
return combine_phrases
remain_1, compete_1 = extract_compete_region(chunk_1, is_head=True)
remain_2, compete_2 = extract_compete_region(chunk_2[1:-1], is_head=False)
compromise = merge_compete(compete_1, compete_2)
if debug:
print(remain_1, '\n', compete_1)
print('-----------------------')
print(compete_2, '\n', remain_2)
print('-----------------------')
print(compromise, '\n\n')
return remain_1 + compromise + remain_2
def merge_chunk_pre_norm(list_chunks, overlap, debug=False):
if len(list_chunks) == 0:
return []
if len(list_chunks) == 1:
return list_chunks[0][1:-1]
current_chunk = list_chunks[0][1:-1]
for tmp_chunk in list_chunks[1:]:
current_chunk = merge_two_chunk(current_chunk, tmp_chunk, overlap, debug=debug)
return current_chunk
def equalize(s1, s2):
l1 = s1.split()
l2 = s2.split()
res1 = []
res2 = []
combine = []
prev = difflib.Match(0, 0, 0)
for match in difflib.SequenceMatcher(a=l1, b=l2).get_matching_blocks():
if prev.a + prev.size != match.a:
for i in range(prev.a + prev.size, match.a):
res2 += ['_' * len(l1[i])]
res1 += l1[prev.a + prev.size:match.a]
for i in l1[prev.a + prev.size:match.a]:
if len(combine) < len(l1) // 2:
print(l1[prev.a + prev.size:match.a])
combine.append(i)
if prev.b + prev.size != match.b:
for i in range(prev.b + prev.size, match.b):
res1 += ['_' * len(l2[i])]
res2 += l2[prev.b + prev.size:match.b]
for i in l2[prev.b + prev.size:match.b]:
if len(combine) >= len(l2) // 2:
print(l2[prev.b + prev.size:match.b])
combine.append(i)
res1 += l1[match.a:match.a + match.size]
res2 += l2[match.b:match.b + match.size]
combine += l2[match.b:match.b + match.size]
prev = match
return ' '.join(res1), ' '.join(res2), combine
def count_overlap(words_1, words_2):
# print(words_1, words_2)
assert len(words_1) == len(words_2)
len_overlap = 0
for match in difflib.SequenceMatcher(a=words_1, b=words_2).get_matching_blocks():
len_overlap += match.size
# for w1, w2 in zip(words_1, words_2):
# if w1 == w2:
# len_overlap += 1
return len_overlap
def find_overlap_chunk(txt_1, txt_2):
# print(txt_1)
# print(txt_2)
window_view = 1
idx_1 = len(txt_1) - window_view
idx_2 = window_view
over_lap = 0
current_best_idx_1 = len(txt_1)
current_best_idx_2 = 0
while window_view <= len(txt_1) and window_view <= len(txt_2):
current_overlap = count_overlap(txt_1[idx_1:], txt_2[:idx_2])
print(current_overlap)
if over_lap < current_overlap:
over_lap = current_overlap
current_best_idx_1 = idx_1
current_best_idx_2 = idx_2
window_view += 1
idx_1 = len(txt_1) - window_view
idx_2 = window_view
# else:
# break
print('----->', txt_1[current_best_idx_1:], txt_2[:current_best_idx_2])
return txt_1[current_best_idx_1:], txt_2[:current_best_idx_2]
def concat_chunks(list_chunks):
concat_string = list_chunks[0].split()
for i in range(1, len(list_chunks)):
remain_string = list_chunks[i].split()
s1, s2 = find_overlap_chunk(concat_string, remain_string)
s1 = ' '.join(s1)
s2 = ' '.join(s2)
_, _, overlap_merged = equalize(s1, s2)
merge_len = len(s1.split())
concat_string = concat_string[:len(concat_string) - merge_len] + overlap_merged + remain_string[merge_len:]
concat_string = ' '.join(concat_string)
return concat_string
|