Spaces:
Build error
Build error
File size: 15,282 Bytes
394811b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import datasets
import model_handling
from transformers import PreTrainedTokenizerBase
from typing import Optional, Union, Any
from transformers.file_utils import PaddingStrategy
import re
import os
from tqdm import tqdm
# import time
import json
import random
import regtag
from dataclasses import dataclass
import validators
import utils
regexp = re.compile(r"\d{4}[\-/]\d{2}[\-/]\d{2}t\d{2}:\d{2}:\d{2}")
target_bias_words = set(regtag.get_general_en_word())
tokenizer = None
def get_bias_words():
regtag.augment.get_random_oov()
return list(regtag.augment.oov_dict.keys())
def check_common_phrase(word):
if validators.email(word.replace(' @', '@')):
return True
if validators.domain(word):
return True
if validators.url(word):
return True
if word in regtag.get_general_en_word():
return True
return False
@dataclass
class DataCollatorForNormSeq2Seq:
tokenizer: PreTrainedTokenizerBase
model: Optional[Any] = None
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def bias_phrases_extractor(self, features, max_bias_per_sample=30):
# src_ids, src_length, tgt_ids, tgt_length
phrase_candidate = []
sample_output_words = []
bias_labels = []
for sample in features:
words = []
for idx, (src_word_len, tgt_word_len) in enumerate(zip(sample['inputs_length'], sample['outputs_length'])):
src_start_idx = sum(sample['inputs_length'][:idx])
tgt_start_idx = sum(sample['outputs_length'][:idx])
word_input = self.tokenizer.decode(sample['input_ids'][src_start_idx: src_start_idx + src_word_len])
word_output = self.tokenizer.decode(sample['outputs'][tgt_start_idx: tgt_start_idx + tgt_word_len])
words.append(word_output)
if word_input != word_output and not any(map(str.isdigit, word_output)):
phrase_candidate.append(word_output)
sample_output_words.append(words)
phrase_candidate = list(set(phrase_candidate))
phrase_candidate_revised = []
phrase_candidate_common = []
raw_phrase_candidate = []
for item in phrase_candidate:
raw_item = self.tokenizer.sp_model.DecodePieces(item.split())
if check_common_phrase(raw_item):
phrase_candidate_common.append(raw_item)
else:
phrase_candidate_revised.append(item)
raw_phrase_candidate.append(raw_item)
remain_phrase = max(0, max_bias_per_sample * len(features) - len(phrase_candidate_revised))
if remain_phrase > 0:
words_candidate = list(
set(get_bias_words()) - set(raw_phrase_candidate))
random.shuffle(words_candidate)
phrase_candidate_revised += [' '.join(self.tokenizer.sp_model.EncodeAsPieces(item)[:5]) for item in
words_candidate[:remain_phrase]]
for i in range(len(features)):
sample_bias_lables = []
for w_idx, w in enumerate(sample_output_words[i]):
try:
sample_bias_lables.extend(
[phrase_candidate_revised.index(w) + 1] * features[i]['outputs_length'][w_idx])
except:
# random ignore 0 label
if random.random() < 0.5:
sample_bias_lables.extend([0] * features[i]['outputs_length'][w_idx])
else:
sample_bias_lables.extend([self.label_pad_token_id] * features[i]['outputs_length'][w_idx])
bias_labels.append(sample_bias_lables)
assert len(sample_bias_lables) == len(features[i]['outputs']), "{} vs {}".format(sample_bias_lables,
features[i]['outputs'])
# phrase_candidate_ids = [self.tokenizer.encode(item) for item in phrase_candidate]
phrase_candidate_ids = [self.tokenizer.encode(self.tokenizer.sp_model.DecodePieces(item.split())) for item in
phrase_candidate_revised]
phrase_candidate_mask = [[self.tokenizer.pad_token_id] * len(item) for item in phrase_candidate_ids]
return phrase_candidate_ids, phrase_candidate_mask, bias_labels
# pass
def encode_list_string(self, list_text):
text_tokenized = self.tokenizer(list_text)
return self.tokenizer.pad(
text_tokenized,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors='pt',
)
def __call__(self, features, return_tensors=None):
# start_time = time.time()
batch_src, batch_tgt = [], []
for item in features:
src_spans, tgt_spans = utils.make_spoken(item['text'])
batch_src.append(src_spans)
batch_tgt.append(tgt_spans)
# print("Make src-tgt {}s".format(time.time() - start_time))
# start_time = time.time()
features = preprocess_function({"src": batch_src, "tgt": batch_tgt})
# print("Make feature {}s".format(time.time() - start_time))
# start_time = time.time()
phrase_candidate_ids, phrase_candidate_mask, samples_bias_labels = self.bias_phrases_extractor(features)
# print("Make bias {}s".format(time.time() - start_time))
# start_time = time.time()
if return_tensors is None:
return_tensors = self.return_tensors
labels = [feature["outputs"] for feature in features] if "outputs" in features[0].keys() else None
spoken_labels = [feature["spoken_label"] for feature in features] if "spoken_label" in features[0].keys() else None
spoken_idx = [feature["src_spoken_idx"] for feature in features] if "src_spoken_idx" in features[0].keys() else None
word_src_lengths = [feature["inputs_length"] for feature in features] if "inputs_length" in features[0].keys() else None
word_tgt_lengths = [feature["outputs_length"] for feature in features] if "outputs_length" in features[0].keys() else None
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
# same length to return tensors.
if labels is not None:
max_label_length = max(len(l) for l in labels)
max_src_length = max(len(l) for l in spoken_labels)
max_spoken_idx_length = max(len(l) for l in spoken_idx)
max_word_src_length = max(len(l) for l in word_src_lengths)
max_word_tgt_length = max(len(l) for l in word_tgt_lengths)
padding_side = self.tokenizer.padding_side
for feature, bias_labels in zip(features, samples_bias_labels):
remainder = [self.label_pad_token_id] * (max_label_length - len(feature["outputs"]))
remainder_word_tgt_length = [0] * (max_word_tgt_length - len(feature["outputs_length"]))
remainder_spoken = [self.label_pad_token_id] * (max_src_length - len(feature["spoken_label"]))
remainder_spoken_idx = [self.label_pad_token_id] * (max_spoken_idx_length - len(feature["src_spoken_idx"]))
remainder_word_src_length = [0] * (max_word_src_length - len(feature["inputs_length"]))
feature["labels"] = (
feature["outputs"] + [
self.tokenizer.eos_token_id] + remainder if padding_side == "right" else remainder + feature[
"outputs"] + [self.tokenizer.eos_token_id]
)
feature["labels_bias"] = (
bias_labels + [0] + remainder if padding_side == "right" else remainder + bias_labels + [0]
)
feature["spoken_label"] = [self.label_pad_token_id] + feature["spoken_label"] + [self.label_pad_token_id]
feature["spoken_label"] = feature["spoken_label"] + remainder_spoken if padding_side == "right" else remainder_spoken + feature["spoken_label"]
feature["src_spoken_idx"] = feature["src_spoken_idx"] + remainder_spoken_idx
feature['inputs_length'] = [1] + feature['inputs_length'] + [1]
feature['outputs_length'] = feature['outputs_length'] + [1]
feature["inputs_length"] = feature["inputs_length"] + remainder_word_src_length
feature["outputs_length"] = feature["outputs_length"] + remainder_word_tgt_length
features_inputs = [{
"input_ids": [self.tokenizer.bos_token_id] + item["input_ids"] + [self.tokenizer.eos_token_id],
"attention_mask": [self.tokenizer.pad_token_id] + item["attention_mask"] + [self.tokenizer.pad_token_id]
} for item in features]
features_inputs = self.tokenizer.pad(
features_inputs,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)
bias_phrases_inputs = [{
"input_ids": ids,
"attention_mask": mask
} for ids, mask in zip(phrase_candidate_ids, phrase_candidate_mask)]
bias_phrases_inputs = self.tokenizer.pad(
bias_phrases_inputs,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)
outputs = self.tokenizer.pad({"input_ids": [feature["labels"] for feature in features]},
return_tensors=return_tensors)['input_ids']
outputs_bias = self.tokenizer.pad({"input_ids": [feature["labels_bias"] for feature in features]},
return_tensors=return_tensors)['input_ids']
spoken_label = self.tokenizer.pad({"input_ids": [feature["spoken_label"] for feature in features]},
return_tensors=return_tensors)['input_ids']
spoken_idx = self.tokenizer.pad({"input_ids": [feature["src_spoken_idx"] for feature in features]},
return_tensors=return_tensors)['input_ids'] + 1 # 1 for bos token
word_src_lengths = self.tokenizer.pad({"input_ids": [feature["inputs_length"] for feature in features]},
return_tensors=return_tensors)['input_ids']
word_tgt_lengths = self.tokenizer.pad({"input_ids": [feature["outputs_length"] for feature in features]},
return_tensors=return_tensors)['input_ids']
features = {
"input_ids": features_inputs["input_ids"],
"spoken_label": spoken_label,
"spoken_idx": spoken_idx,
"word_src_lengths": word_src_lengths,
"word_tgt_lengths": word_tgt_lengths,
"attention_mask": features_inputs["attention_mask"],
"bias_input_ids": bias_phrases_inputs["input_ids"],
"bias_attention_mask": bias_phrases_inputs["attention_mask"],
"labels": outputs,
"labels_bias": outputs_bias
}
# print("Make batch {}s".format(time.time() - start_time))
# start_time = time.time()
# prepare decoder_input_ids
if self.model is not None and hasattr(self.model, "prepare_decoder_input_ids_from_labels"):
decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(labels=features["labels"])
features["decoder_input_ids"] = decoder_input_ids
return features
# data init
def init_data(train_corpus_path='./data-bin/raw/train_raw.txt',
test_corpus_path='./data-bin/raw/valid_raw.txt'):
dataset_oov = datasets.load_dataset('text', data_files={"train": train_corpus_path,
"test": test_corpus_path})
print(dataset_oov)
return dataset_oov
def preprocess_function(batch):
global tokenizer
if tokenizer is None:
tokenizer = model_handling.init_tokenizer()
features = []
for src_words, tgt_words in zip(batch["src"], batch["tgt"]):
src_ids, pad_ids, src_lengths, tgt_ids, tgt_lengths = [], [], [], [], []
src_spoken_label = [] # 0: "O", 1: "B", 2: "I"
src_spoken_idx = []
tgt_spoken_ids = []
for idx, (src, tgt) in enumerate(zip(src_words, tgt_words)):
is_remain = False
if src == tgt:
is_remain = True
src_tokenized = tokenizer(src)
if len(src_tokenized['input_ids']) < 3:
continue
# hardcode fix tokenizer email
if validators.email(tgt):
tgt_tokenized = tokenizer(tgt.replace('@', ' @'))
else:
tgt_tokenized = tokenizer(tgt)
if len(tgt_tokenized['input_ids']) < 3:
continue
src_ids.extend(src_tokenized["input_ids"][1:-1])
if is_remain:
src_spoken_label.extend([0 if random.random() < 0.5 else -100 for _ in range(len(src_tokenized["input_ids"][1:-1]))])
if random.random() < 0.1:
# Random pick normal word for spoken norm
src_spoken_idx.append(idx)
tgt_spoken_ids.append(tgt_tokenized["input_ids"][1:-1])
else:
src_spoken_label.extend([1] + [2] * (len(src_tokenized["input_ids"][1:-1]) - 1))
src_spoken_idx.append(idx)
tgt_spoken_ids.append(tgt_tokenized["input_ids"][1:-1])
pad_ids.extend(src_tokenized["attention_mask"][1:-1])
src_lengths.append(len(src_tokenized["input_ids"]) - 2)
tgt_ids.extend(tgt_tokenized["input_ids"][1:-1])
tgt_lengths.append(len(tgt_tokenized["input_ids"]) - 2)
if len(src_ids) > 70 or len(tgt_ids) > 70:
# print("Ignore sample")
break
if len(src_ids) < 1 or len(tgt_ids) < 1:
continue
# else:
# print("ignore")
features.append({
"input_ids": src_ids,
"attention_mask": pad_ids,
"spoken_label": src_spoken_label,
"inputs_length": src_lengths,
"outputs": tgt_ids,
"outputs_length": tgt_lengths,
"src_spoken_idx": src_spoken_idx,
"tgt_spoken_ids": tgt_spoken_ids
})
return features
if __name__ == "__main__":
split_datasets = init_data()
model, model_tokenizer = model_handling.init_model()
data_collator = DataCollatorForNormSeq2Seq(model_tokenizer, model=model)
# start = time.time()
batch = data_collator([split_datasets["train"][i] for i in [random.randint(0, 900) for _ in range(0, 12)]])
print(batch)
# print("{}s".format(time.time() - start))
|