Spaces:
Paused
Paused
Upload chatbot.py
Browse files- chatbot.py +108 -0
chatbot.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain_community.chat_models import ChatOpenAI
|
| 3 |
+
|
| 4 |
+
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
| 5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 6 |
+
from langchain_community.embeddings import OpenAIEmbeddings
|
| 7 |
+
from langchain_community.vectorstores import Chroma
|
| 8 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
+
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from streamlit_chat import message
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@st.cache_data()
|
| 15 |
+
def load_docs():
|
| 16 |
+
documents = []
|
| 17 |
+
for file in os.listdir('docs'):
|
| 18 |
+
if file.endswith('.pdf'):
|
| 19 |
+
pdf_path = "./docs/"+file
|
| 20 |
+
loader = PyPDFLoader(pdf_path)
|
| 21 |
+
documents.extend(loader.load())
|
| 22 |
+
elif file.endswith('.docx') or file.endswith('.doc'):
|
| 23 |
+
doc_path = './docs/'+file
|
| 24 |
+
loader = Docx2txtLoader(doc_path)
|
| 25 |
+
documents.extend(loader.load())
|
| 26 |
+
elif file.endswith('.txt'):
|
| 27 |
+
text_path = '.docs/'+file
|
| 28 |
+
loader = TextLoader(text_path)
|
| 29 |
+
documents.extend(loader.load())
|
| 30 |
+
|
| 31 |
+
return documents
|
| 32 |
+
|
| 33 |
+
os.environ["OPENAI_API_KEY"] = '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'
|
| 34 |
+
|
| 35 |
+
llm_model = "gpt-3.5-turbo"
|
| 36 |
+
llm = ChatOpenAI(temperature=.7, model=llm_model)
|
| 37 |
+
#======================================================================================================================
|
| 38 |
+
# Load documents
|
| 39 |
+
documents = load_docs()
|
| 40 |
+
chat_history = []
|
| 41 |
+
|
| 42 |
+
# 1. Text splitter
|
| 43 |
+
text_splitter = CharacterTextSplitter(
|
| 44 |
+
chunk_size = 100,
|
| 45 |
+
chunk_overlap = 20,
|
| 46 |
+
length_function = len
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# 2. Embedding
|
| 50 |
+
embeddings = OpenAIEmbeddings()
|
| 51 |
+
|
| 52 |
+
docs = text_splitter.split_documents(documents)
|
| 53 |
+
|
| 54 |
+
#=====================================================================================================================
|
| 55 |
+
# 3. Storage
|
| 56 |
+
vector_store = Chroma.from_documents(
|
| 57 |
+
documents=docs,
|
| 58 |
+
embedding=embeddings,
|
| 59 |
+
persist_directory='./data'
|
| 60 |
+
)
|
| 61 |
+
vector_store.persist()
|
| 62 |
+
# ====================================================================================================================
|
| 63 |
+
# 4. Retrieve
|
| 64 |
+
retriever = vector_store.as_retriever(search_kwargs={"k":6})
|
| 65 |
+
# docs = retriever.get_relevant_documents("Tell me more about Data Science")
|
| 66 |
+
|
| 67 |
+
# Make a chain to answer questions
|
| 68 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 69 |
+
llm,
|
| 70 |
+
vector_store.as_retriever(search_kwargs={'k':6}),
|
| 71 |
+
return_source_documents=True,
|
| 72 |
+
verbose=False
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# cite sources - helper function to prettyfy responses
|
| 77 |
+
def process_llm_response(llm_response):
|
| 78 |
+
print(llm_response['result'])
|
| 79 |
+
print('\n\nSources:')
|
| 80 |
+
for source in llm_response['source_documents']:
|
| 81 |
+
print(source.metadata['source'])
|
| 82 |
+
|
| 83 |
+
#==============================FRONTEND=======================================
|
| 84 |
+
st.title("ViTo chatbot👠")
|
| 85 |
+
st.header("Ask anything about ViTo company...")
|
| 86 |
+
|
| 87 |
+
if 'generated' not in st.session_state:
|
| 88 |
+
st.session_state['generated'] = []
|
| 89 |
+
|
| 90 |
+
if 'past' not in st.session_state:
|
| 91 |
+
st.session_state['past'] = []
|
| 92 |
+
|
| 93 |
+
def get_query():
|
| 94 |
+
input_text = st.chat_input("Ask a question about your documents...")
|
| 95 |
+
return input_text
|
| 96 |
+
|
| 97 |
+
# retrieve the user input
|
| 98 |
+
user_input = get_query()
|
| 99 |
+
if user_input:
|
| 100 |
+
result = qa_chain({'question': user_input, 'chat_history': chat_history})
|
| 101 |
+
st.session_state.past.append(user_input)
|
| 102 |
+
st.session_state.generated.append(result['answer'])
|
| 103 |
+
|
| 104 |
+
if st.session_state['generated']:
|
| 105 |
+
for i in range(len(st.session_state['generated'])):
|
| 106 |
+
message(st.session_state['past'][i], is_user=True, key=str(i)+'_user')
|
| 107 |
+
message(st.session_state['generated'][i], key=str(i))
|
| 108 |
+
|