ViTo_chatbot / app.py
Huy0502's picture
Create app.py
ea8b3bf verified
import os
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
from streamlit_chat import message
@st.cache_data()
def load_docs():
documents = []
for file in os.listdir('docs'):
if file.endswith('.pdf'):
pdf_path = "./docs/"+file
loader = PyPDFLoader(pdf_path)
documents.extend(loader.load())
elif file.endswith('.docx') or file.endswith('.doc'):
doc_path = './docs/'+file
loader = Docx2txtLoader(doc_path)
documents.extend(loader.load())
elif file.endswith('.txt'):
text_path = '.docs/'+file
loader = TextLoader(text_path)
documents.extend(loader.load())
return documents
os.environ["OPENAI_API_KEY"] = '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'
llm_model = "gpt-3.5-turbo"
llm = ChatOpenAI(temperature=.7, model=llm_model)
#======================================================================================================================
# Load documents
documents = load_docs()
chat_history = []
# 1. Text splitter
text_splitter = CharacterTextSplitter(
chunk_size = 100,
chunk_overlap = 20,
length_function = len
)
# 2. Embedding
embeddings = OpenAIEmbeddings()
docs = text_splitter.split_documents(documents)
#=====================================================================================================================
# 3. Storage
vector_store = Chroma.from_documents(
documents=docs,
embedding=embeddings,
persist_directory='./data'
)
vector_store.persist()
# ====================================================================================================================
# 4. Retrieve
retriever = vector_store.as_retriever(search_kwargs={"k":6})
# docs = retriever.get_relevant_documents("Tell me more about Data Science")
# Make a chain to answer questions
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
vector_store.as_retriever(search_kwargs={'k':6}),
return_source_documents=True,
verbose=False
)
# cite sources - helper function to prettyfy responses
def process_llm_response(llm_response):
print(llm_response['result'])
print('\n\nSources:')
for source in llm_response['source_documents']:
print(source.metadata['source'])
#==============================FRONTEND=======================================
st.title("ViTo chatbot👠")
st.header("Ask anything about ViTo company...")
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
def get_query():
input_text = st.chat_input("Ask a question about your documents...")
return input_text
# retrieve the user input
user_input = get_query()
if user_input:
result = qa_chain({'question': user_input, 'chat_history': chat_history})
st.session_state.past.append(user_input)
st.session_state.generated.append(result['answer'])
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])):
message(st.session_state['past'][i], is_user=True, key=str(i)+'_user')
message(st.session_state['generated'][i], key=str(i))