File size: 6,435 Bytes
8aca528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
from datasets import load_metric
from PIL import ImageDraw, ImageFont
import pandas as pd


metric = load_metric("seqeval")


def unnormalize_box(bbox, width, height):
    return [
        width * (bbox[0] / 1000),
        height * (bbox[1] / 1000),
        width * (bbox[2] / 1000),
        height * (bbox[3] / 1000)
    ]


def normalize_box(bbox, width, height):
    return [
        int((bbox[0] / width) * 1000),
        int((bbox[1] / height) * 1000),
        int((bbox[2] / width) * 1000),
        int((bbox[3] / height) * 1000)
    ]


def draw_output(image, true_predictions, true_boxes):
    def iob_to_label(label):
        label = label
        if not label:
            return 'other'
        return label

    # width, height = image.size

    # predictions = logits.argmax(-1).squeeze().tolist()
    # is_subword = np.array(offset_mapping)[:,0] != 0
    # true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    # true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]

    # draw
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()

    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = iob_to_label(prediction).lower()
        draw.rectangle(box, outline='red')
        draw.text((box[0] + 10, box[1] - 10),
                  text=predicted_label, fill='red', font=font)

    return image


def create_df(true_texts,

              true_predictions,

              chosen_labels=['SHOP_NAME', 'ADDR', 'TITLE', 'PHONE',

                             'PRODUCT_NAME', 'AMOUNT', 'UNIT', 'UPRICE', 'SUB_TPRICE', 'UDISCOUNT',

                             'TAMOUNT', 'TPRICE', 'FPRICE', 'TDISCOUNT',

                             'RECEMONEY', 'REMAMONEY',

                             'BILLID', 'DATETIME', 'CASHIER']

              ):

    data = {'text': [], 'class_label': [], 'product_id': []}
    product_id = -1
    for text, prediction in zip(true_texts, true_predictions):
        if prediction not in chosen_labels:
            continue

        if prediction == 'PRODUCT_NAME':
            product_id += 1
            

        if prediction in ['AMOUNT', 'UNIT', 'UDISCOUNT', 'UPRICE', 'SUB_TPRICE',
                          'UDISCOUNT', 'TAMOUNT', 'TPRICE', 'FPRICE', 'TDISCOUNT',
                          'RECEMONEY', 'REMAMONEY']:
            text = reformat(text)


        if prediction in ['AMOUNT', 'SUB_TPRICE', 'UPRICE', 'PRODUCT_NAME']:
            data['product_id'].append(product_id)
        else:
            data['product_id'].append('')


        data['class_label'].append(prediction)
        data['text'].append(text)


    df = pd.DataFrame(data)

    return df


def reformat(text: str):
    try:
        text = text.replace('.', '').replace(',', '').replace(':', '').replace('/', '').replace('|', '').replace(
            '\\', '').replace(')', '').replace('(', '').replace('-', '').replace(';', '').replace('_', '')
        return int(text)
    except:
        return text

def find_product(product_name, df):
    product_name = product_name.lower()
    product_df = df[df['class_label'] == 'PRODUCT_NAME']
    mask = product_df['text'].str.lower().str.contains(product_name, case=False, na=False)
    if mask.any():
        product_id = product_df.loc[mask, 'product_id'].iloc[0]
        product_info = df[df['product_id'] == product_id]
        
        prod_name = product_info.loc[product_info['class_label'] == 'PRODUCT_NAME', 'text'].iloc[0]
            
        try:
            amount = product_info.loc[product_info['class_label'] == 'AMOUNT', 'text'].iloc[0]
        except:
            print("Error: cannot find amount")
            amount = ''
            
        try:
            uprice = product_info.loc[product_info['class_label'] == 'UPRICE', 'text'].iloc[0]
        except:
            print("Error: cannot find unit price")
            uprice = ''
            
        try:
            sub_tprice = product_info.loc[product_info['class_label'] == 'SUB_TPRICE', 'text'].iloc[0]
        except:
            print("Error: cannot find sub total price")
            sub_tprice = ''
            
        #print("Sản phẩm: ", product_info.loc[product_info['class_label'] == 'PRODUCT_NAME', 'text'].iloc[0])
        #print("Số lượng: ", product_info.loc[product_info['class_label'] == 'AMOUNT', 'text'].iloc[0])
        #print("Đơn giá: ", product_info.loc[product_info['class_label'] == 'UPRICE', 'text'].iloc[0])
        #print("Thành tiền: ", product_info.loc[product_info['class_label'] == 'SUB_TPRICE', 'text'].iloc[0])
        return f"Sản phẩm: {prod_name}\n Số lượng: {amount}\n Đơn giá: {uprice}\n Thành tiền: {sub_tprice}"
    else:
        #print("Không tìm thấy item nào phù hợp.")
        return "Không tìm thấy item nào phù hợp."
    #return result = product_df['text'].str.contains(product_name, case=False, na=False).any()
    #return product_df[product_df['text'].str.contains(product_name, case=False, na=False)]


def get_info(df):
    try:
        shop_name = df.loc[df['class_label'] == 'SHOP_NAME', 'text'].iloc[0]
    except:
        print("Error: cannot find shop name")
        shop_name = ''
    print("Tên siêu thị: ", shop_name)

    try:
        addr = df.loc[df['class_label'] == 'ADDR', 'text'].iloc[0]
    except:
        print("Error: cannot find address")
        addr = ''
    print("Địa chỉ: ", addr)

    try:
        bill_id = df.loc[df['class_label'] == 'BILLID', 'text'].iloc[0]
    except:
        print("Error: cannot find bill id")
        bill_id = ''
    print("ID hóa đơn: ", bill_id)

    try:
        date_time = df.loc[df['class_label'] == 'DATETIME', 'text'].iloc[0]
    except:
        print("Error: cannot find date and time")
        date_time = ''
    print("Ngày: ", date_time)

    try:
        cashier = df.loc[df['class_label'] == 'CASHIER', 'text'].iloc[0]
    except:
        print("Error: cannot find cashier")
        cashier = ''
    print("Nhân viên: ", cashier)

    return f"Tên siêu thị: {shop_name}\n Địa chỉ: {addr}\n ID hóa đơn: {bill_id}\n Ngày: {date_time}\n Nhân viên: {cashier}\n"