HuseynG commited on
Commit
0b9a698
·
1 Parent(s): e5718ef

adding scheduler

Browse files
Files changed (2) hide show
  1. app.py +9 -3
  2. utils.py +17 -2
app.py CHANGED
@@ -1,6 +1,10 @@
1
  import gradio as gr
2
  import torch
3
- from utils import load_model, generate_random_img
 
 
 
 
4
 
5
  def generate_image():
6
  with torch.no_grad():
@@ -18,5 +22,7 @@ iface = gr.Interface(
18
  css='img_styles.css',
19
  )
20
 
21
- iface.launch()
22
-
 
 
 
1
  import gradio as gr
2
  import torch
3
+ from utils import load_model, generate_random_img, schedule_function
4
+ import time
5
+ import random
6
+ import threading
7
+ from gradio_client import Client
8
 
9
  def generate_image():
10
  with torch.no_grad():
 
22
  css='img_styles.css',
23
  )
24
 
25
+ if __name__ == '__main__':
26
+ scheduler_thread = threading.Thread(target=schedule_function) # avoiding sleep, again this project is for academic purposes only
27
+ scheduler_thread.start()
28
+ iface.launch()
utils.py CHANGED
@@ -1,5 +1,7 @@
1
- # Generator model
2
- # Critic Model
 
 
3
 
4
  import torch
5
  import torchvision
@@ -142,6 +144,19 @@ def generate_random_img(model):
142
 
143
  return generated_image
144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
  if __name__ == "__main__":
146
  model = load_model('generator','generator_model_epoch_94.pth')
147
  generate_random_img(model)
 
1
+ import time
2
+ import random
3
+ import threading
4
+ from gradio_client import Client
5
 
6
  import torch
7
  import torchvision
 
144
 
145
  return generated_image
146
 
147
+ def schedule_function(): # for dummy space so that this spcae and other space will call each other to avoid sleep time, again this project is for academic purpose.
148
+ while True:
149
+ # wait_time = random.uniform(3 * 60 * 60, 5 * 60 * 60) # Get a random wait time between 3 and 5 hours in seconds
150
+ wait_time = random.uniform(3, 5)
151
+ time.sleep(wait_time)
152
+ # call dummyscape
153
+ client = Client("https://huseyng-dummyspace.hf.space/")
154
+ result = client.predict(
155
+ f"Howdy! {wait_time}", # str representing string value in 'name' Textbox component
156
+ api_name="/predict"
157
+ )
158
+ print(result)
159
+
160
  if __name__ == "__main__":
161
  model = load_model('generator','generator_model_epoch_94.pth')
162
  generate_random_img(model)